scholarly journals Effect of Fractions, and Compounds from Typha capensis in LPS-Stimulated Raw 264.7 Cells. Pro and Anti-inflammatory Cytokines

Author(s):  
Moise Ondua

Typha capensis is widely used by traditional healers to treat male fertility, venereal problems and inflammation. There are many molecular targets implicated in the inflammatory process: pro- and anti-inflammatory cytokines such as interleukin 1-β, IL-6, IL-10, IL-12p70, tumor necrosis factor alpha (TNF-α), and IL-8, and other proteins such as COX-2, and iNOS. In order to clarify the anti-inflammatory mechanism of action of compounds isolated from T. capensis, RAW 264.7 macrophages were activated by lipopolysaccharide and pre-treated with T. capensis isolated compounds. Lipopolysaccharide-stimulated RAW macrophages after treatment with T. capensis crude acetone extract resulted in decreasing expression of pro-inflammatory cytokines (TNF-α, IL-6,) and increased expression of immunomodulatory cytokine IL-12 P 70.  Isorhamnetin-3-O-β-D-glucoside and  isorhamnetin 3-O rutinoside increased the expression of pro-inflammatory cytokines TNF-α, but failed to reduce the expression of IL-1β and TNF-α. Isorhamnetin-3-O-β-D-glucoside and isorhamnetin 3-O rutinoside increased the expression of immunomodulatory cytokine IL-12p70. Isorhamnetin-3-O-β-D-glucoside  increased the expression of the anti-inflammatory cytokine IL-10 compared to quercetin and LPS-stimulated macrophages. The effect of isorhamnetin 3-O-rutinoside and isorhamnetin-3-O-β-D-glucoside on molecular targets of inflammation may provide support for the use of T. capensis by traditional healers against inflammation.

2021 ◽  
Vol 19 (3) ◽  
pp. 467-476
Author(s):  
Jung-Soon Han

Purpose: This study investigated the nutritional value of Misutkaru with added Gryllus bimaculatus powder (GBM) and its applicability as a healthy functional food.Methods: Chemical analysis of the moisture, crude fat, protein, and mineral contents was performed in accordance with the Association of Official Analytical Chemists (AOAC) guidelines. The amino acid and fatty acid compositions were analyzed using an automatic amino acid analyzer and gas chromatography, respectively. The levels of inflammatory cytokines tumor necrosis factor‑alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL‑6) induced by lipopolysaccharides in RAW 264.7 cells were measured.Results: The general composition per 100 g of GBM was 41.87 g protein, 19.75 g fat, and 28.52 g carbohydrates. The mineral content per 100 g of GBM was 889.66 mg calcium, 1189.73 mg potassium, 220.36 mg magnesium, 207.51 mg sodium, 694.81 mg phosphorus, and 15.50 mg zinc. In particular, valine (21.361 mg/kg), leucine (29.180 mg/kg), and isoleucine (15.562 mg/kg) were abundant in GBM. GBM also effectively downregulated the production of the inflammatory cytokines TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophages.Conclusion: Misutkaru with added Gryllus bimaculatus powder may have potential for application in the development of food materials or foods to prevent muscle loss in elderly individuals and sarcopenia patients, build muscle, and prevent increase in blood lipid concentrations in middle aged people. In particular, as Gryllus bimaculatus is low in fat and carbohydrates, it can be used as a diet material.


2020 ◽  
Vol 48 (08) ◽  
pp. 1875-1893
Author(s):  
Da-Sol Kim ◽  
Kyoung-Eun Park ◽  
Yeon-Ju Kwak ◽  
Moon-Kyoung Bae ◽  
Soo-Kyung Bae ◽  
...  

Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1[Formula: see text], interleukin-6, tumor necrosis factor (TNF)-[Formula: see text], and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110209
Author(s):  
Yun Sil Kang ◽  
You Chul Chung ◽  
Jung No Lee ◽  
Bong Seok Kim ◽  
Chang-Gu Hyun

Coumarin derivatives, such as esculetin, have various physiological functions, including antioxidant, anti-inflammatory, antibacterial, antiviral, and anti-cancer. 6,7-Dihydroxy-4-methylcoumarin (6,7-DH-4MC) is a derivative of esculetin, and its anti-inflammatory effect and mechanism in macrophages have not been studied. In this study, the anti-inflammatory activity of 6,7-DH-4MC was evaluated by measuring the expression of inflammatory factors (NO and PGE2) and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-stimulated RAW 264.7 macrophages. The results revealed that 6,7-DH-4MC significantly reduced NO levels and PGE2 expression without inducing cytotoxicity; it was confirmed that the inhibition of NO and PGE2 expression was related to iNOS and COX-2 downregulation in response to 6,7-DH-4MC treatment. Moreover, 6,7-DH-4MC decreased the levels of pro-inflammatory cytokines, such as IL-1β and IL-6, in a dose-dependent manner. Mechanistic studies revealed reduced phosphorylation of ERK and p38-MAPK upon 6,7-DH-4MC treatment. Furthermore, the degradation of IκB-α and phosphorylation of NF-κB in cells treated with LPS were interrupted by 6,7-DH-4MC treatment. These results suggest that 6,7-DH-4MC is a potential therapeutic agent for inflammatory diseases. To the best of our knowledge, this is the first report demonstrating the anti-inflammatory effects of 6,7-DH-4MC in RAW 264.7 cells via MAPK and NF-κB signaling pathways.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5351
Author(s):  
Jin-Kyu Kang ◽  
You-Chul Chung ◽  
Chang-Gu Hyun

Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3374
Author(s):  
Mohamed Abdo Rizk ◽  
Shimaa Abd El-Salam El-Sayed ◽  
Doaa Salman ◽  
Basma H. Marghani ◽  
Hossam Elshahat Gadalla ◽  
...  

In this study, we have investigated the impact of vitamin C on the production of pro-inflammatory cytokines (interleukin 1 β (IL-1 β), interleukin 6 (IL-6), interleukin 12p40 (IL-12p40), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNF-α)) in lambs naturally infected by pneumonic pasteurellosis. Of 37 lambs, 18 lambs were identified to have pneumonic pasteurellosis and randomly allocated into two equal groups. Single subcutaneous dose of tulathromycine alone (2.5 mg kg−1) or tulathromycine combined with vitamin C (3 gm kg−1) were administrated to the diseased lambs. The serum levels of IL-1β, IL-6, IFN-γ, and TNF-α were returned to the normal levels in pneumonic lambs treated with the combination therapy. The obtained results indicate the selective influences of vitamin C on pro-inflammatory cytokines production in sera of lambs with pneumonic pasteurellosis and highlights the value of vitamin C as a potential anti-inflammatory drug and ideal immunomodulatory agent.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2209
Author(s):  
Adhimoolam Karthikeyan ◽  
Hun Hwan Kim ◽  
Vetrivel Preethi ◽  
Mohammad Moniruzzaman ◽  
Ki Ho Lee ◽  
...  

Citrus unshiu is a popular medicinal herb in several Asian countries, in particular South Korea. C. unshiu peel (CUP) has several biologically active compounds, including flavonoids. Hence, this research aimed to label the flavonoids from CUP by HPLC-MS/MS analysis and examine their anti-inflammatory and antioxidant potential on LPS-stimulated RAW 264.7 macrophages. A total of four flavonoids (Rutin, naringin, hesperidin, and poncirin) were characterized, and their contents were quantified from CUP. It showed that the naringin is rich in CUP. Further, treatment with the flavonoids at concentrations of 2.5 and 5 μg/mL had no effect on the cell viability of RAW 264.7 macrophages. On the other hand, it decreased the production and expression of inflammatory mediators and pro-inflammatory cytokines such as NO, PGE2, TNF-α, IL-1β, iNOS, and COX2 in the LPS-stimulated RAW 264.7 macrophages. In addition, flavonoids treatment inhibited the NF-κB activation by downregulating the p-p65 and p-IκBα proteins expression. Furthermore, reactive oxygen species (ROS) production considerably decreased at the same concentrations while antioxidant enzyme activity increased in the LPS-stimulated RAW 264.7 macrophages. Collectively, our results show that CUP flavonoids have the potential to decrease inflammation and oxidative damage.


2021 ◽  
Vol 41 (9) ◽  
Author(s):  
Su-Min Lee ◽  
Wooil Choi ◽  
Woo-Ri Shin ◽  
Yang-Hoon Kim ◽  
Jiho Min

Abstract Vacuoles are membrane vesicles in eukaryotic cells, the digestive system of cells that break down substances absorbed outside the cell and digest the useless components of the cell itself. Researches on anticancer and intractable diseases using vacuoles are being actively conducted. The practical application of the present study to animals requires the determination of the biocompatibility of vacuole. In the present study, we evaluated the effects of vacuoles isolated from Saccharomyces cerevisiae in RAW 264.7 cells. This showed a significant increase in the production of nitric oxide (NO) produced by macrophage activity. Using Reactive Oxygen Species (ROS) assay, we identified that ROS is increased in a manner dependent on vacuole concentration. Western blot analysis showed that vacuole concentration-dependently increased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). Therefore, iNOS expression was stimulated to induce NO production. In addition, pro-inflammatory cytokines levels promoted, such as interleukin (IL) 6 (IL-6) and tumor necrosis factor (TNF) α (TNF-α). In summary, vacuoles activate the immune response of macrophages by promoting the production of immune-mediated transporters NO, ROS, and pro-inflammatory cytokines.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1880 ◽  
Author(s):  
Salman Islam ◽  
Jung Lee ◽  
Adeeb Shehzad ◽  
Eun-Mi Ahn ◽  
You Lee ◽  
...  

Inflammation is considered the root cause of various inflammatory diseases, including cancers. Decursinol angelate (DA), a pyranocoumarin compound obtained from the roots of Angelica gigas, has been reported to exhibit potent anti-inflammatory effects. In this study, the anti-inflammatory effects of DA on the MAP kinase and NFκB signaling pathways and the expression of pro-inflammatory cytokines were investigated in phorbol 12-myristate 13-acetate (PMA)-activated human promyelocytic leukemia (HL-60) and lipopolysaccharide (LPS)-stimulated macrophage (Raw 264.7) cell lines. PMA induced the activation of the MAP kinase-NFκB pathway and the production of pro-inflammatory cytokines in differentiated monocytes. Treatment with DA inhibited the activation of MAP kinases and the translocation of NFκB, and decreased the expression and exogenous secretion of IL-1β and IL-6. Furthermore, LPS-stimulated Raw 264.7 cells were found to have increased expression of M1 macrophage-associated markers, such as NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS), and the M2 macrophage-associated marker CD11b. LPS also activated pro-inflammatory cytokines and Erk-NFκB. Treatment with DA suppressed LPS-induced macrophage polarization and the inflammatory response by blocking Raf-ERK and the translocation of NFκB in Raw 264.7 cells. Treatment with DA also inhibited the expression of pro-inflammatory cytokines, such as IL-1β and IL-6, NOX, and iNOS in Raw 264.7 cells. These results suggest that DA has the potential to inhibit macrophage polarization and inflammation by blocking the activation of pro-inflammatory signals. These anti-inflammatory effects of DA may contribute to its potential use as a therapeutic strategy against various inflammation-induced cancers.


2014 ◽  
Vol 9 (5) ◽  
pp. 1934578X1400900
Author(s):  
Neeraj K Patel ◽  
Sravani Pulipaka ◽  
Shashi P. Dubey ◽  
Kamlesh K Bhutani

The anti-inflammatory and cytotoxic activity of thirty-six extracts of nine Indian medicinal plants were determined by measuring the inhibition of production of nitric oxide (NO), interleukin 1beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Their cytotoxic activity against macrophages was determined by MTT assay. The ethyl acetate (EtOAc) extract of Cassia occidentalis L. (roots) (IC50= 21.3 to 43.1 μg/mL) and Mimosa pudica (whole plant) (IC50 = 31.7 to 47.2 μg/mL) and the dichloromethane (DCM) extract of Leucas cephalotes (whole plant) (IC50= 46.8 to 49.3 μg/mL) exhibited significant anti-inflammatory activity by in vitro inhibition of the production of TNF-α, IL-1β and NO in LPS stimulated RAW 264.7 cells. Furthermore, the five compounds isolated from the ethyl acetate extract of Cassia occidentalis roots were found to suppress LPS-induced IL-1β, TNF-α and NO production in a concentration-dependent manner in these cells at IC50 values ranging from 22.5 to 97.4 μM. Emodin and chrysophanol were also found active in inhibiting pro-inflammatory cytokines in vivo. These findings justify an ethnopharmacological use of C occidentalis roots as an effective herbal remedy for the treatment and prevention of inflammation and associated ailments.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 275 ◽  
Author(s):  
Fanhui Kong ◽  
Bae Lee ◽  
Kun Wei

5-Hydroxymethylfurfural (5-HMF) is found in many food products including honey, dried fruits, coffee and black garlic extracts. Here, we investigated the anti-inflammatory activity of 5-HMF and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. 5-HMF pretreatment ranging from 31.5 to 126.0 μg/mL reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a concentration-dependent manner in LPS-stimulated cells. Moreover, 5-HMF-pretreated cells significantly down-regulated the mRNA expression of two major inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and suppressed the production of pro-inflammatory cytokines, as compared with the only LPS-stimulated cells. 5-HMF suppressed the phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), IκBα, NF-κB p65, the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). Besides, 5-HMF was proved to inhibit NF-κB p65 translocation into nucleus to activate inflammatory gene transcription. These results suggest that 5-HMF could exert the anti-inflammatory activity in the LPS-induced inflammatory response by inhibiting the MAPK, NF-κB and Akt/mTOR pathways. Thus, 5-HMF could be considered as a therapeutic ingredient in functional foods.


Sign in / Sign up

Export Citation Format

Share Document