scholarly journals Enhanced immune response by vacuoles isolated from Saccharomyces cerevisiae in RAW 264.7 macrophages

2021 ◽  
Vol 41 (9) ◽  
Author(s):  
Su-Min Lee ◽  
Wooil Choi ◽  
Woo-Ri Shin ◽  
Yang-Hoon Kim ◽  
Jiho Min

Abstract Vacuoles are membrane vesicles in eukaryotic cells, the digestive system of cells that break down substances absorbed outside the cell and digest the useless components of the cell itself. Researches on anticancer and intractable diseases using vacuoles are being actively conducted. The practical application of the present study to animals requires the determination of the biocompatibility of vacuole. In the present study, we evaluated the effects of vacuoles isolated from Saccharomyces cerevisiae in RAW 264.7 cells. This showed a significant increase in the production of nitric oxide (NO) produced by macrophage activity. Using Reactive Oxygen Species (ROS) assay, we identified that ROS is increased in a manner dependent on vacuole concentration. Western blot analysis showed that vacuole concentration-dependently increased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). Therefore, iNOS expression was stimulated to induce NO production. In addition, pro-inflammatory cytokines levels promoted, such as interleukin (IL) 6 (IL-6) and tumor necrosis factor (TNF) α (TNF-α). In summary, vacuoles activate the immune response of macrophages by promoting the production of immune-mediated transporters NO, ROS, and pro-inflammatory cytokines.

2014 ◽  
Vol 9 (5) ◽  
pp. 1934578X1400900
Author(s):  
Neeraj K Patel ◽  
Sravani Pulipaka ◽  
Shashi P. Dubey ◽  
Kamlesh K Bhutani

The anti-inflammatory and cytotoxic activity of thirty-six extracts of nine Indian medicinal plants were determined by measuring the inhibition of production of nitric oxide (NO), interleukin 1beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Their cytotoxic activity against macrophages was determined by MTT assay. The ethyl acetate (EtOAc) extract of Cassia occidentalis L. (roots) (IC50= 21.3 to 43.1 μg/mL) and Mimosa pudica (whole plant) (IC50 = 31.7 to 47.2 μg/mL) and the dichloromethane (DCM) extract of Leucas cephalotes (whole plant) (IC50= 46.8 to 49.3 μg/mL) exhibited significant anti-inflammatory activity by in vitro inhibition of the production of TNF-α, IL-1β and NO in LPS stimulated RAW 264.7 cells. Furthermore, the five compounds isolated from the ethyl acetate extract of Cassia occidentalis roots were found to suppress LPS-induced IL-1β, TNF-α and NO production in a concentration-dependent manner in these cells at IC50 values ranging from 22.5 to 97.4 μM. Emodin and chrysophanol were also found active in inhibiting pro-inflammatory cytokines in vivo. These findings justify an ethnopharmacological use of C occidentalis roots as an effective herbal remedy for the treatment and prevention of inflammation and associated ailments.


2021 ◽  
Author(s):  
Su-Min Lee ◽  
Wooil Choi ◽  
Woo-Ri Shin ◽  
Yang-Hoon Kim ◽  
Jiho Min

Vacuoles are membrane vesicles in eukaryotic cells, the digestive system of cells that break down substances absorbed outside the cell and digest the useless components of the cell itself. Researches on anti-cancer and intractable diseases using vacuoles are being actively conducted. The practical application of this study to animals requires the determination of the biocompatibility of vacuole. In the present study, we evaluated the effects of vacuoles isolated from S. cerevisiae in RAW264.7 cells. This showed a significant increase in the production of nitric oxide produced by macrophage activity. Using Reactive Oxygen Species (ROS) Assay, we identified that ROS is increased in a manner dependent on vacuole concentration. Western blot analysis showed that vacuole concentration-dependently increased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). Therefore, iNOS expression was stimulated to induce Nitric oxide (NO) production. In addition, pro-inflammatory cytokines levels promoted, such as interleukin 6 and tumor necrosis factor -α. In summary, vacuoles activate the immune response of macrophages by promoting the production of immune-mediated transporters NO, ROS, and pro-inflammatory cytokines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 269 ◽  
Author(s):  
Su Cheol Baek ◽  
Dahae Lee ◽  
Mun Seok Jo ◽  
Kwang Ho Lee ◽  
Yong Hoon Lee ◽  
...  

Hippophae rhamnoides L. (Elaeagnaceae; commonly known as “sea buckthorn” and “vitamin tree”), is a spiny deciduous shrub whose fruit is used in foods and traditional medicines. The H. rhamnoides fruit (berry) is rich in vitamin C, with a level exceeding that found in lemons and oranges. H. rhamnoides berries are usually washed and pressed to create pomace and juice. Today, the powder of the aqueous extract of H. rhamnoides berries are sold as a functional food in many countries. As part of our ongoing effort to identify bioactive constituents from natural resources, we aimed to isolate and identify those from the fruits of H. rhamnoides. Phytochemical analysis of the extract of H. rhamnoides fruits led to the isolation and identification of six compounds, namely, a citric acid derivative (1), a phenolic (2), flavonoids (3 and 4), and megastigmane compounds (5 and 6). Treatment with compounds 1–6 did not have any impact on the cell viability of RAW 264.7 mouse macrophages. However, pretreatment with these compounds suppressed lipopolysaccharide (LPS)-induced NO production in RAW 264.7 mouse macrophages in a concentration-dependent manner. Among the isolated compounds, compound 1 was identified as the most active, with an IC50 of 39.76 ± 0.16 μM. This value was comparable to that of the NG-methyl-L-arginine acetate salt, a nitric oxide synthase inhibitor with an IC50 of 28.48 ± 0.05 μM. Western blot analysis demonstrated that compound 1 inhibited the LPS-induced expression of IKKα/β (IκB kinase alpha/beta), I-κBα (inhibitor of kappa B alpha), nuclear factor kappa-B (NF-κB) p65, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) in RAW 264.7 cells. Furthermore, LPS-stimulated cytokine production was detected using a sandwich enzyme-linked immunosorbent assay. Compound 1 decreased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) production in LPS-stimulated RAW 264.7 cells. In summary, the mechanism of action of 1 included the suppression of LPS-induced NO production in RAW 264.7 cells by inhibiting IKKα/β, I-κBα, NF-κB p65, iNOS, and COX-2, and the activities of IL-6 and TNF-α.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 576 ◽  
Author(s):  
Hongju Liu ◽  
Chong Yan ◽  
Changqun Li ◽  
Tingting You ◽  
Zhigang She

Twelve 1, 4-naphthoquinone derivatives, including two new (1 and 2) and 10 known (3–12), were obtained from endophytic fungus Talaromyces sp. SK-S009 isolated from the fruit of Kandelia obovata. All structures were identified through extensive analysis of the nuclear magnetic resonance (NMR), mass spectrometry (MS) and circular dichroism (CD), as well as by comparison with literature data. These compounds significantly inhibited the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in the murine macrophage cell line (RAW 264.7 cells). The half maximal inhibitory concentration (IC50) values, except for compound 2, were lower than that of indomethacin (26.3 μM). Compound 9 inhibited the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expressions in RAW 264.7 macrophages. Additionally, compound 9 reduced the mRNA levels of pro-inflammatory factors interleukin (IL)1β, IL-6, and tumor necrosis factor (TNF)-α. The results of this study demonstrated that these 1, 4-naphthoquinone derivatives can inhibit LPS-induced inflammation.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5351
Author(s):  
Jin-Kyu Kang ◽  
You-Chul Chung ◽  
Chang-Gu Hyun

Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Wan-Jung Lu ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
...  

Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods. The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion. The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 275 ◽  
Author(s):  
Fanhui Kong ◽  
Bae Lee ◽  
Kun Wei

5-Hydroxymethylfurfural (5-HMF) is found in many food products including honey, dried fruits, coffee and black garlic extracts. Here, we investigated the anti-inflammatory activity of 5-HMF and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. 5-HMF pretreatment ranging from 31.5 to 126.0 μg/mL reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a concentration-dependent manner in LPS-stimulated cells. Moreover, 5-HMF-pretreated cells significantly down-regulated the mRNA expression of two major inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and suppressed the production of pro-inflammatory cytokines, as compared with the only LPS-stimulated cells. 5-HMF suppressed the phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), IκBα, NF-κB p65, the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). Besides, 5-HMF was proved to inhibit NF-κB p65 translocation into nucleus to activate inflammatory gene transcription. These results suggest that 5-HMF could exert the anti-inflammatory activity in the LPS-induced inflammatory response by inhibiting the MAPK, NF-κB and Akt/mTOR pathways. Thus, 5-HMF could be considered as a therapeutic ingredient in functional foods.


2021 ◽  
Vol 27 (4) ◽  
pp. 343-350
Author(s):  
Yanfen Yao ◽  
Hong Wang ◽  
Xueqin Xi ◽  
Wei Sun ◽  
Junke Ge ◽  
...  

miR-150 was found to target the 3′-untranslated regions of AKT3, and the AKT pathway was affected by SR protein kinase 1 (SRPK1). However, the expression and significance of miR-150, AKT3 and SRPK1 in acute lung injury (ALI) were not clear. Here, we found that the expression of miR-150 was significantly reduced, while the expression of AKT3 and SRPK1 were markedly increased in LPS-treated A549, THP-1 and RAW 264.7 cells. miR-150 significantly decreased levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, reduced the expression of AKT3, but had no impact on SRPK1 expression compared with the control group in LPS-treated A549, THP-1 and RAW 264.7 cells. AKT3 silencing only reduced the production of pro-inflammatory cytokines and showed no effect on miR-150 and SRPK1 expression. Finally, we observed that miR-150 mimics and/or silencing of SRPK1 decreased the expression of AKT3 mRNA. Besides, over-expression of miR-150 or silencing of SRPK1 also reduced the expression of AKT3 protein, which exhibited the lowest level in the miR-150 mimics plus si-SRPK1 group. However, si-SRPK1 had no effect on miR-150 level. In conclusion, miR-150 and SRPK1 separately and cooperatively participate into inflammatory responses in ALI through regulating AKT3 pathway. Increased miR-150 and silenced SRPK1 may be a novel potential factor for preventing and treating more inflammatory lung diseases.


Author(s):  
Moise Ondua

Typha capensis is widely used by traditional healers to treat male fertility, venereal problems and inflammation. There are many molecular targets implicated in the inflammatory process: pro- and anti-inflammatory cytokines such as interleukin 1-β, IL-6, IL-10, IL-12p70, tumor necrosis factor alpha (TNF-α), and IL-8, and other proteins such as COX-2, and iNOS. In order to clarify the anti-inflammatory mechanism of action of compounds isolated from T. capensis, RAW 264.7 macrophages were activated by lipopolysaccharide and pre-treated with T. capensis isolated compounds. Lipopolysaccharide-stimulated RAW macrophages after treatment with T. capensis crude acetone extract resulted in decreasing expression of pro-inflammatory cytokines (TNF-α, IL-6,) and increased expression of immunomodulatory cytokine IL-12 P 70.  Isorhamnetin-3-O-β-D-glucoside and  isorhamnetin 3-O rutinoside increased the expression of pro-inflammatory cytokines TNF-α, but failed to reduce the expression of IL-1β and TNF-α. Isorhamnetin-3-O-β-D-glucoside and isorhamnetin 3-O rutinoside increased the expression of immunomodulatory cytokine IL-12p70. Isorhamnetin-3-O-β-D-glucoside  increased the expression of the anti-inflammatory cytokine IL-10 compared to quercetin and LPS-stimulated macrophages. The effect of isorhamnetin 3-O-rutinoside and isorhamnetin-3-O-β-D-glucoside on molecular targets of inflammation may provide support for the use of T. capensis by traditional healers against inflammation.


Sign in / Sign up

Export Citation Format

Share Document