scholarly journals The Effect of Ascorbic Acid on the Physical and Proximate Properties of Wheat-Acha Composite Bread

Author(s):  
N. C. Onuegbu ◽  
P. C. Ngobidi ◽  
N. C. Ihediohanma ◽  
E. N. Bede

This work studied the effect of different proportions of ascorbic acid on the physical and proximate properties on wheat-acha composite bread. Bread was produced from wheat (Triticum aestivum) and acha (Digitaria exilis) composite flours. The wheat: acha ratios used were 100:0, 90:10 and 80:20. The proximate, and functional properties of the flours were analysed. The dough improver, ascorbic acid was added at 80, 100 and 120ppm during the bread making process and the proximate, physical and sensory properties of the bread was analysed. Flour sample with 20% acha had the significantly highest values for bulk density (0.744g/cm3), water absorption capacity (1.5g/g), oil absorption capacity (1.564g/g), foam capacity (11.32%) and swelling index (1.24). There was no significant difference in the crude fat and ash content of all bread samples. Significant difference was observed in the volume and specific volume of the bread samples, with 100% wheat flour giving the highest values of 431.33 ml and 3.16 ml/g respectively. However, addition of ascorbic acid significantly improved these parameters with no significant difference between the 100ppm and 120ppm bread samples.  Also the bread samples produced with 100:0 and 90:10 wheat: acha flours showed no significant difference in their sensory properties. The 80:20 composite bread gave significantly lower sensory scores for all the sensory parameters.

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Arubi P. Alobo ◽  
Gibson L. Arueya

Wheat and cassava composite breads are generally associated with volume and textural defects in contrast with the traditional wheat based variants. Efforts to mitigate this challenge through use of synthetic additives have been unsuccessful owing to safety concerns. The objective of this study was to explore Grewia venusta mucilage as a potential natural additive in wheat-cassava composite bread production. Sweet cassava flour was used to replace wheat flour at 100: 0 (control), 90:10, 80:20 and 70:30% ratios in bread making. Aqueous extract of G. venusta stem bark was oven dried (50±3 oC), milled and added at 0, 1.0 and 2.0% (w/w) to the flour mixtures. These, along with other conventional inputs were mixed, and used to produce bread. Proximate compositions, physical and sensory properties of the bread loaves were evaluated. Cassava flour inclusion resulted in significant (P≤0.05) decrease in the protein content of the control from 18.1% to 12.1% (90:10%), 11.5% (80:20%) and 9.9% (70:30%). Addition of mucilage marginally increased the protein and dietary fibre contents of the loaves. Loaves containing 1-2% mucilage were more regular in shape with smoother crust than those without mucilage. Cassava flour addition at 10%, 20% and 30% decreased loaf height from 6.0 cm to 5.8 cm, 5.7 cm and 5.5 cm, as well as loaf volume from 815.5 cm3 to 783.1 cm3, 776.8 cm3 and 744.5 cm3, respectively. Mucilage inclusion resulted in increased heights and volumes of the loaves and reduced weights of loaf fragments upon slicing. The mucilage significantly improved the texture of the bread loaves. 


2008 ◽  
Vol 14 (6) ◽  
pp. 487-495 ◽  
Author(s):  
B.K. Tiwari ◽  
U. Tiwari ◽  
R. Jagan Mohan ◽  
K. Alagusundaram

Physicochemical, functional, pasting, and cooking properties of dehulled pigeon pea (Cajanus cajan L) splits and flour processed by different pre-treatments (dry, wet, and newly proposed hydrothermal pretreatment) were studied. There was no significant difference ( p < 0.05) in protein and carbohydrate content of pre-treated pigeon pea samples except ash content for wet method and lipid content for dry method. Significant differences were observed in some physicochemical properties such as physical dimensions, hydration, and swelling capacity. Water absorption and oil absorption capacity were significantly higher for hydrothermally pre-treated grain with reduced foaming capacity and stability as compared to other pre-treatments. Pasting profile of hydrothermally treated pigeon pea showed lower value on peak viscosity (0.90Pa.s) and breakdown (0.002Pa.s), with higher pasting temperature (87.5°C). Hydrothermally treated pigeon pea splits were found to be superior in terms of cooking properties compared to other pre-treatments.


2011 ◽  
Vol 57 (4) ◽  
pp. 144-153 ◽  
Author(s):  
Soňa Gavurníková ◽  
Michaela Havrlentová ◽  
Ľubomír Mendel ◽  
Iveta Čičová ◽  
Magdaléna Bieliková ◽  
...  

Parameters of Wheat Flour, Dough, and Bread Fortified by Buckwheat and Millet FloursThe composite flours were created from basic wheat flour and from buckwheat and millet flours used as additives in the weight ratio of 5-30%. Basic technological parameters of flours (ash content, wet gluten, gluten swelling, sedimentation index, falling number), rheological properties of dough, and sensory parameters of baked bread loaves (weight, specific volume, aroma, taste, structure) were studied. Additives influenced all traits of flours, doughs, and baked breads. From the technological and sensory points of view, baked breads with the addition of buckwheat were accepted up to the addition of 20% and breads with millet up to 5% (even though taste and flavour were accepted up to 15% addition).


2021 ◽  
Author(s):  
Marijana Simic

The present study was carried out to demonstrate the combined effects of different maize flour, ascorbic acid and sugar on the physical, textural and sensory properties of composite breads. The composite flour was prepared using 70% of wheat flour and 30% of flour obtained from grain of differently coloured maize - light blue, blue, red and yellow maize flour. Chemical characterization of composite flours made with four different types of maize was also assessed. Furthermore, the content of total phenolics, flavonoids, anthocyanins, phenolic acids and antioxidant capacity in composite flours was determined. The total of 12 breads that were prepared, four of which were control composite breads, four breads with ascorbic acid, and four were breads with ascorbic acid and sugar. The content of total phenolic compounds showed clear differences among all composite flours. The anthocyanins content determined in composite flours was in the following descending order: blue>red>light blue, while in the yellow maize composite flour anthocyanins were not detected. The results showed that the addition of AsA (0.025%) and sugar (5%) negatively affected the volume as well as the specific volume of composite wheat-maize breads. The texture analysis showed that the addition of AsA in amount of 0.025% had no impact on springiness, cohesiveness and resilience of bread crumb, while it increased crumb hardness. However, composite breads made with AsA and AsA and sugar showed a more compact structure, with a larger number of cells and smaller mean cell areas. Bread samples with AsA and sugar in the tested doses had the lowest springiness, which is indicative of brittleness and reflects the tendency of the bread to crumble when slicing. Results of the sensory evaluation revealed that the AsA and sugar addition had a generally positive effect on the investigated sensory attributes.


2020 ◽  
Vol 12 (1) ◽  
pp. 18-23
Author(s):  
Osunrinade Oludolapo A. ◽  
Azeez Abibat O. ◽  
Babalola Kafayat A. ◽  
Bamisaye Yemisi O.

Background: Shea butter is the under-consumed vegetable fat and oil. Making shea butter a part of food components in confectionaries would increase its utilization. Objective: In this study, the cake was produced by incorporating shea butter as shortening. Methods: Shea butter to margarine ratio was 100: 0, 50:50, 40:60, 30:70, and 0:100%, and additional cake samples were produced using flashed shea butter. Standard methods determined the physical and proximate properties of the cake samples, while 25-member panelists did the sensory evaluation. Statistical significance was done at p<0.05. The height, weight, and volume of the cake samples ranged from 3.2 to 3.9 cm, 39 to 50 g, and 625 cm3 to 1026 cm3, respectively. The ranges of moisture, fat, protein, carbohydrate, crude fiber, and the ash content of cakes were 13.7-17.3, 24.3- 30.7, 4.4-8.6, 43-50, 0.10-1.10, and 2.9-3.9%, respectively. The energy value of cake samples in kcal ranged from 440 to 471. Results: There was no significant difference (p>0.05) in the height and volume of the cakes produced from 100% shea butter and 100% margarine. The fat, crude fiber, and ash content increase with the increase in Shea butter substitution. There was no significant difference in the taste and appearance of cake samples from 100%, 70%, 60%, and 50% margarine. Conclusion: Cake samples produced with 60% margarine and 40% shea butter were the most liked by the consumers. Acceptable cakes can be produced by the inclusion of up to 50% shea butter as part of the shortening.


2014 ◽  
Vol 4 (3) ◽  
pp. 436-441
Author(s):  
Ifesan B.O.T ◽  
B. T Ifesan ◽  
Orogbangba A.K

Rice bran was subjected to natural fermentation for 4 days and investigated for its physicochemical, antioxidant, phytochemical, functional properties and mineral content. In addition, the fermented and non-fermented rice bran flours were supplemented with wheat flour in several ratios for baking bread. The proximate composition results obtained showed that fermented rice bran flour possessed protein content of 5.68%, fibre (37.8%), fat (2.97%) and carbohydrate (31.06). It was observed that the total phenol content for non-fermented rice bran flour (362.69 GAE µg/ml) was higher than fermented bran flour (359.15 GAE µg/ml). However, the ability of the samples to scavenge 1,1-di phenyl-2-picrylhydrazyl (DPPH) radical was higher in fermented flour (57.0mg/ml) than in non-fermented sample (55.0 mg/ml). The result of the qualitative analysis of the phytochemical screening revealed that only saponin was present in the rice bran flours. The mineral composition of the non-fermented and fermented rice bran flours revealed that the flours possessed magnesium (0.19%-0.18%), sodium (0.06%-0.17%), calcium (0.08%-0.13%) and potassium (0.03%-0.02%). The physical properties of bread sample at 20% rice bran flour supplementation showed that there was no significant difference between loaf volume of the wheat flour bread and non-fermented rice bran bread (360cm3) while there was significant difference in the loaf volume of fermented rice bran bread (281cm3). It was observed that the fermented rice bran bread had the highest fibre content (1.83%), followed by non-fermented rice bran bread (1.37%) and wheat flour bread (0.95%). The sensory analysis revealed that both the fermented and non-fermented rice bran breadswere scored above average in all sensory parameters although wheat flour bread was preferred. 


2019 ◽  
Author(s):  
Chem Int

Bread is popular around the world and is one of the world’s oldest foods. Bread is usually made from common wheat-flour dough. Till date most people are not familiar with other types of bread apart from that made from 100% wheat flour. When a part of wheat flour is replaced with flours from other food sources (yam, cassava, etc) the wheat gluten is automatically reduced. This study aimed at re-examining the approval of ten percent (10%) cassava flour inclusion in bread baking in Nigeria and evaluating higher % substitutions, with a view to increasing cassava carrying capacity for producing acceptable bread. The water absorption capacity (WAC) of wheat, cassava and composite flours ranged from 62.7 to 79% while oil absorption capacity (OAC) ranged from 4.5 to 72%. As cassava percent inclusion increased both WAC and OAC increased. Bread loaves produced from 10-20% inclusions without egg white had sensory scores of 3.2 to 3.9 and were significantly (p &lt; 0.05) better than 25-30% wheat cassava composite bread loaves. In all sensory attributes, 10-20% cassava inclusion, with added egg white, produced bread loaves which were as good as 100% wheat bread. In terms of taste, colour, odour and texture 25-30% composite bread loaves had identical sensory values. This study showed that bread of acceptable quality can be produced from wheat flour substituted with up to 30% cassava flour.


2020 ◽  
Vol 45 (5) ◽  
Author(s):  
C. Imoisi ◽  
J.U. Iyasele ◽  
U.C. Michael ◽  
E.E. Imhontu

The present study was undertaken to develop bread from composite flours. Composite flours were prepared by blending wheat flour with watermelon rind flour in ratios of 100:0 (AB1), 90:10 (AB2), 80:20 (AB3), 70:30 (AB4) and 60:40 (AB5), respectively. This study was carried out to ascertain the effects of watermelon rind flour at different replacement levels (0%, 10%, 20%, 30%, 40%) on the proximate and functional properties of composite wheat bread. The results of proximate properties determination on wheat/flour blend gave low bulk densities of 0.54g/cm3 to 0.60g/cm3, high water absorption capacity of 2.389 to 3.044 g/g as well as a high swelling capacity of 5.764 to 7.610 g/g and a low oil absorption capacity of 1.608 to 2.150 g/g. The results of proximate composition of composite bread revealed an increase in % protein, % carbohydrate and % ash from 15.7% to 18.8%, 47.1% to 52.0% and 0.6% to 1.2% respectively and a subsequent decrease in % fat from 18.4% to 13.8. There was a reduction in energy density for composite bread. The functional properties of composite flours such as swelling capacity, water absorption capacity, oil absorption capacity and bulk density were increased with increase in the incorporation of watermelon rind flour with wheat flour. Thus, the results indicate that by incorporating watermelon rind flour, it is possible to enhance the nutritional quality, chemical and functional properties of bread.


2017 ◽  
Vol 54 (2) ◽  
pp. 198
Author(s):  
Shilpa Yatnatti ◽  
D. Vijayalakshmi

India is the largest producer of mangoes with 44.14 % of the total world production. The kernel obtained after decortication of mango stone can be utilized as a supplement to wheat flour. Present study was undertaken with the objective to study sensory properties and shelf life of Mango Kernel Flour (MKF) incorporated wheat crackers (baked food product). Mango kernel accounts for 9 % of total weight of mango fruit. Flour recovery from mango seed kernel is 80.6 %. Except for water absorption capacity, functional properties of MKF and wheat flour differed significantly. Sensory scores obtained for 20 % incorporation level was observed to be on par with the control. At the 15<sup>th</sup> day there was slight decrease but statistically significant difference was noticed between initial and 30th day for sensory scores of crackers. But both control and MKF incorporated crackers had acceptable sensory scores for all the parameters, indicating shelf life of one month. Less microbial load on MKF crackers at the end of 30 days of storage period may be attributed to the presence of polyphenols, which exhibits antimicrobial activity. MKF can be utilized as wheat flour supplement up to 20 % in crackers, with least effect on sensory properties and exhibited shelf life of one month.


2015 ◽  
Vol 4 (5) ◽  
pp. 1 ◽  
Author(s):  
Monday O. Akusu ◽  
David B. Kiin-Kabari

<p>A comparative study on the physicochemical and sensory properties of watermelon (<em>Citrullus lanatus</em>) and melon (<em>Citrullus vulgaris</em>)<em> </em>seed flours in food preparation were investigated. A composite flour containing equal parts of watermelon seed flour and melon seed flour were prepared. Egusi soups were prepared from the melon seed flour; watermelon seed flour and a combination of the two flours in equal proportions. Sensory properties of the three soups were evaluated. The results of the investigation showed that the equal proportions of watermelon/melon seed flours had higher crude protein of 27.73% and crude fat of 47.85% than the water melon seed and melon seed flours. There was no significant difference (P&gt;0.05) in water absorption, foam capacity, viscosity and least gelation properties of the melon seed flour compared to the 50:50 flour sample. The sensory properties showed no significant difference (P&gt;0.05) in appearance, taste, thickness and overall acceptability of egusi soup from melon seed flour and 50:50 flour sample. Therefore watermelon seed flour can be used to replace 50% melon seed flour in the preparation of egusi soup</p>


Sign in / Sign up

Export Citation Format

Share Document