scholarly journals COVID-19 Immunopathology, Particle Pollution, and Iron Balance

Author(s):  
Mark Whiteside ◽  
J. Marvin Herndon

The coronavirus (COVID-19) pandemic exploded into a world already reeling from climate change, degradation of natural systems, and pandemics of air pollution and noncommunicable diseases. These pandemics are interrelated; air pollution, the world’s biggest killer, is a major contributor to noncommunicable disease. Air pollution is a probable cofactor in the spread and severity of COVID-19. There are shared mechanisms of injury by the emerging COVID-19 immunopathology, ultrafine air pollutants, and chronic degenerative disease. A key feature of each is oxidative stress, including that caused by iron dysregulation. Exogenous combustion-derived magnetite nanoparticles found in human brains and hearts are strongly implicated in the development of cardiometabolic and neurogenerative disease. Altered iron balance favoring excess reactive or misplaced iron is probably the most important predisposing condition for severe COVID-19 infection. Ultrafine-particle/nanoparticle toxicity and COVID-19 immunopathology on the subcellular level are both characterized by iron dysregulation, mitochondrial dysfunction, and endoplasmic reticulum stress. Primary sources of the most damaging ultrafine pollution particles are fossil fuel combustion, vehicle emissions, and coal fly ash utilized in undisclosed tropospheric aerosol geoengineering. The same ultrafine particles when emitted or placed into the troposphere alter the world’s cloud layers and reduce atmospheric convection, directly contributing to climate change and global warming. Pandemics can only be tackled by international cooperation. Immediate steps that must be taken include monitoring and control of ultrafine particulate air pollution, and prompt cessation of geoengineering operations.

2019 ◽  
Vol 40 (1) ◽  
pp. 261-282 ◽  
Author(s):  
Howard Frumkin ◽  
Andy Haines

Multiple global environmental changes (GECs) now under way, including climate change, biodiversity loss, freshwater depletion, tropical deforestation, overexploitation of fisheries, ocean acidification, and soil degradation, have substantial, but still imperfectly understood, implications for human health. Noncommunicable diseases (NCDs) make a major contribution to the global burden of disease. Many of the driving forces responsible for GEC also influence NCD risk through a range of mechanisms. This article provides an overview of pathways linking GEC and NCDs, focusing on five pathways: ( a) energy, air pollution, and climate change; ( b) urbanization; ( c) food, nutrition, and agriculture; ( d) the deposition of persistent chemicals in the environment; and ( e) biodiversity loss.


2020 ◽  
pp. 1-13
Author(s):  
J. Marvin Herndon ◽  
Mark Whiteside

Bats have great economic and environmental importance, including nocturnal insect control, pollination, seed dispersal and forest regeneration. Bats, however, like insects and birds are suffering a precipitous global decline due to anthropogenic causes. Deliberate air pollution in the form of undisclosed tropospheric aerosol geoengineering (TAG) has extremely damaging effects throughout the biosphere. Forensic scientific evidence implicates coal fly ash (CFA), the toxic waste product of coal-burning, as the main constituent of the jet-sprayed particulate trails seen around the world. Coal fly ash is a primary source of the ultrafine and nano-sized particulate fraction of air pollution that adversely impacts human and environmental health. Recently, countless exogenous magnetic pollution particles from combustion sources were found in human brains and heart tissue. Previous studies reveal that aerosolized CFA is a significant factor in the catastrophic global decline of birds and insects. Insects can accumulate aerosolized CFA on their body surfaces and/or ingest CFA particulates that insectivorous bats then consume. Bats are excellent mammalian bioindicators of environmental contaminants and it is known that their tissue contains high levels of metals and persistent organic pollutants. From a review of the literature, we show that the pollutant element ratios in bat tissue and bat guano are consistent with an origin in CFA-type air pollution. These findings suggest that CFA, including its use in covert climate engineering operations, is an unacknowledged factor in the morbidity and mortality of bats. Bats, therefore, are an important "canary in the coal mine" pointing to the urgency of halting covert climate engineering and greatly reducing ultrafine particulate air pollution.


Author(s):  
J. Marvin Herndon ◽  
Mark Whiteside

Near-total adherence to false scientific theories is the striking parallel between 19th century miasma theory associated with cholera, dispelled by Dr. John Snow, and 21st century “miasmas”, namely, the anthropogenic-carbon-dioxide-cause of global warming theory, and its presumed “cure” by geoengineering, undisclosed jet-spraying particulate pollution into the troposphere. An image published in the New York Times in 2017 began a series of discoveries that pointed to particulate pollution, not carbon dioxide, as the principal cause of global warming. Both industrial and deliberate jet-sprayed particulate pollution heat the atmosphere and thus reduces atmospheric convection-efficiency, which retards heat loss from earth’s surface and causes global warming, concomitantly wreaking havoc on human and environmental health. Today’s “bad air,” rather than spreading contagion, is causing a pandemic of non-communicable diseases (NCD’s) and decimating our natural environment. Covert tropospheric aerosol geoengineering, especially utilizing coal fly ash, is a primary catalyst for both of these modern disasters, and it must be recognized and halted. Air pollution is the leading environmental cause of disease and death in the world. Combustion products of fossil fuels are major contributors to both global warming and air pollution. The causes of air pollution and associated runaway global warming are modifiable in a short time-frame by reducing industrial and geo-engineering particulate pollution. However, corrective actions hinge on a scientific paradigm-shift and international cooperation at all levels of authority. The modern “miasmas” of complacency encompassing the universal dangers of air pollution and the deadly code of silence on the subject of undisclosed geo-engineering must be dispelled if we are to have a “fighting chance” to confront these global public health emergencies. Despite Snow’s ground-breaking work, the stubborn belief in “miasma” as the cause of infectious disease persisted well beyond his death into the 20th Century; our time is much too short now to delay changing course.


2008 ◽  
Vol 14 (1) ◽  
pp. 47-49 ◽  
Author(s):  
Jasmina Jovic-Stosic ◽  
Milena Jovasevic-Stojanovic

Epidemiological and clinical studies suggested the association of the particulate matter ambient air pollution and the increased morbidity and mortality, mainly from respiratory and cardiovascular diseases. The size of particles has great influence on their toxicity, because it determines the site in the respiratory tract where they deposit. The most well established theory explaining the mechanisms behind the increased toxicity of ultrafine particles (UFP, < 0.1 ?m) is that it has to do with the increased surface area and/or the combination with the increased number of particles. Biological effects of UFP are also determined by their shape and chemical composition, so it is not possible to estimate their toxicity in a general way. General hypothesis suggested that exposure to inhaled particles induces pulmonary alveolar inflammation as a basic pathophysiological event, triggering release of various proinflammatory cytokines. Chronic inflammation is a very important underlying mechanism in the genesis of atherosclerosis and cardiovascular diseases. UFP can freely move through the circulation, but their effects on the secondary organs are not known yet, so more studies on recognizing toxicological endpoints of UFP are needed. Determination of UFP toxicity and the estimation of their internal and biologically active dose are necessary for the evidence based conclusions connecting air pollution by UFP and human diseases. .


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hector A. Olvera ◽  
Daniel Perez ◽  
Juan W. Clague ◽  
Yung-Sung Cheng ◽  
Wen-Whai Li ◽  
...  

Ultrafine particles (UFPs) contribute to health risks associated with air pollution, especially respiratory disease in children. Nonetheless, experimental data on UFP deposition in asthmatic children has been minimal. In this study, the effect of ventilation, developing respiratory physiology, and asthmatic condition on the deposition efficiency of ultrafine particles in children was explored. Deposited fractions of UFP (10–200 nm) were determined in 9 asthmatic children, 8 nonasthmatic children, and 5 nonasthmatic adults. Deposition efficiencies in adults served as reference of fully developed respiratory physiologies. A validated deposition model was employed as an auxiliary tool to assess the independent effect of varying ventilation on deposition. Asthmatic conditions were confirmed via pre-and post-bronchodilator spirometry. Subjects were exposed to a hygroscopic aerosol with number geometric mean diameter of 27–31 nm, geometric standard deviation of 1.8–2.0, and concentration of1.2×106particles cm−3. Exposure was through a silicone mouthpiece. Total deposited fraction (TDF) and normalized deposition rate were 50% and 32% higher in children than in adults. Accounting for tidal volume and age variation, TDF was 21% higher in asthmatic than in non-asthmatic children. The higher health risks of air pollution exposure observed in children and asthmatics might be augmented by their susceptibility to higher dosages of UFP.


2018 ◽  
Vol 97 (2) ◽  
pp. 160-161 ◽  
Author(s):  
Diarmid Campbell-Lendrum ◽  
Annette Prüss-Ustün

Author(s):  
Mark Whiteside ◽  
J. Marvin Herndon

Globally, air pollution is the leading environmental cause of human disease and death, and it is a major contributor to cardiovascular disease. Air pollution damages the cardiovascular system by oxidative stress, inflammation, endothelial dysfunction, and pro-thrombotic changes. Ultrafine particulate matter from the combustion of fossil fuels delivers the most potent and harmful elements of air pollution. Coal fly ash is a rich source of nano-sized metal, iron oxide, and carbonaceous particles. Previous findings revealed that coal fly ash is widely utilized in undisclosed tropospheric aerosol geoengineering.  Proper iron balance is central to human health and disease, and the harmful effects of iron are normally prevented by tightly controlled processes of systemic and cellular iron homeostasis. Altered iron balance is linked to the traditional risk factors for cardiovascular disease. The iron-heart hypothesis is supported by epidemiological, clinical, and experimental studies. Biogenic magnetite (Fe3O4) serves essential life functions, but iron oxide nanoparticles from anthropogenic sources cause disease. The recent finding of countless combustion-type magnetic nanoparticles in damaged hearts of persons from highly polluted areas is definitive evidence of the connection between the iron oxide fraction of air pollution and cardiovascular disease.  Spherical magnetic iron oxide particles found in coal fly ash and certain vehicle emissions match the exogenous iron pollution particles found in the human heart. Iron oxide nanoparticles cross the placenta and may act as seed material for future cardiovascular disease. The pandemic of non-communicable diseases like cardiovascular disease and also rapid global warming can be alleviated by drastically reducing nanoparticulate air pollution. It is crucial to halt tropospheric aerosol geoengineering, and to curb fine particulate emissions from industrial and traffic sources to avoid further gross contamination of the human race by iron oxide-type nanoparticles.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 407
Author(s):  
Antonio Donateo ◽  
Adelaide Dinoi ◽  
Gianluca Pappaccogli

In order to slow the spread of SARS-CoV-2, governments have implemented several restrictive measures (lockdown, stay-in-place, and quarantine policies). These provisions have drastically changed the routines of residents, altering environmental conditions in the affected areas. In this context, our work analyzes the effects of the reduced emissions during the COVID-19 period on the ultrafine particles number concentration and their turbulent fluxes in a suburban area. COVID-19 restrictions did not significantly reduce anthropogenic related PM10 and PM2.5 levels, with an equal decrement of about 14%. The ultrafine particle number concentration during the lockdown period decreased by 64% in our measurement area, essentially due to the lower traffic activity. The effect of the restriction measures and the reduction of vehicles traffic was predominant in reducing concentration rather than meteorological forcing. During the lockdown in 2020, a decrease of 61% in ultrafine particle positive fluxes can be observed. At the same time, negative fluxes decreased by 59% and our observation site behaved, essentially, as a sink of ultrafine particles. Due to this behavior, we can conclude that the principal particle sources during the lockdown were far away from the measurement site.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Antonio Bernabé-Ortiz ◽  
Jessica H. Zafra-Tanaka ◽  
Miguel Moscoso-Porras ◽  
Rangarajan Sampath ◽  
Beatrice Vetter ◽  
...  

AbstractA key component of any health system is the capacity to accurately diagnose individuals. One of the six building blocks of a health system as defined by the World Health Organization (WHO) includes diagnostic tools. The WHO’s Noncommunicable Disease Global Action Plan includes addressing the lack of diagnostics for noncommunicable diseases, through multi-stakeholder collaborations to develop new technologies that are affordable, safe, effective and quality controlled, and improving laboratory and diagnostic capacity and human resources. Many challenges exist beyond price and availability for the current tools included in the Package of Essential Noncommunicable Disease Interventions (PEN) for cardiovascular disease, diabetes and chronic respiratory diseases. These include temperature stability, adaptability to various settings (e.g. at high altitude), need for training in order to perform and interpret the test, the need for maintenance and calibration, and for Blood Glucose Meters non-compatible meters and test strips. To date the issues surrounding access to diagnostic and monitoring tools for noncommunicable diseases have not been addressed in much detail. The aim of this Commentary is to present the current landscape and challenges with regards to guidance from the WHO on diagnostic tools using the WHO REASSURED criteria, which define a set of key characteristics for diagnostic tests and tools. These criteria have been used for communicable diseases, but so far have not been used for noncommunicable diseases. Diagnostic tools have played an important role in addressing many communicable diseases, such as HIV, TB and neglected tropical diseases. Clearly more attention with regards to diagnostics for noncommunicable diseases as a key component of the health system is needed.


Sign in / Sign up

Export Citation Format

Share Document