scholarly journals Effect of Field Treatment with Selected Soil Amendments on Bacterial Wilt Incidences in Tomatoes, Capsicum and Potatoes

Author(s):  
E. K. Kago ◽  
Z. M. Kinyua ◽  
J. M. Maingi ◽  
P. O. Okemo

Aims: The aim of this study was to establish the effect of field treatment with selected soil amendments on bacterial wilt incidences in Tomatoes, Capsicum and Potatoes.  Study Design:  The study was laid out as randomized complete block design (RCBD) in split plot arrangement for two seasons in the field. Place and Duration of Study: The experiment was conducted at the experimental plots at KARLO- NARL, Kabete Nairobi County between July, 2017- September, 2017 and between November, 2017- January, 2018. Methodology: The three choice crops of interest (potatoes, tomatoes and capsicum) were inoculated with prepared pure bacterial isolates; 18 (2T-Kiambu-Low Land), 71(2A-Nyeri-Low Land), 67 (2A-Nyeri-High Land), 83 (2T-Kirinyaga-Highland) and MX (18/71/67/83). A plot measuring 66 m by 28.5 m was marked, cleared, ploughed, harrowed and demarcated into 150 plots each measuring 2.4 m x 3.75 m. Spacing of the host crops of interest: potato - (Tigoni variety), tomato (Caj variety) and capsicum (Califonia Wonder) was carried out at 75 cm between the rows and 30 cm within the rows. The treatments were ChalimTM, Super-hydro-grow polymer + Metham sodium, Metham sodium, Metham sodium & Orange peel, Super-hydro-grow polymer, Brassica tissues, ChalimTM + Super-hydro-grow polymer, Brassica tissue + Orange peel, Metham sodium + Super-hydro-grow polymer and Control (no amendments). Results: Significant differences (P≤0.05) were revealed in the bacterial wilt incidences in tomatoes, capsicum and potatoes between control and all the soil amendments used in season 1 and 2 in the five R. solanacearum isolate from Kenyan highlands and lowlands. The Brassica tissue + Super-hydro-grow polymer was superior in reducing bacterial wilt incidences in tomatoes, capsicum and potatoes in the field in all the R. solanacearum isolates from Kenyan highlands and lowlands both in season 1 and 2. Conclusion: The findings showed that organic and inorganic soil amendments could serve as a viable control of bacterial wilt in solanaceous crops caused by R. solanacearum in the field. We recommend the use of Brassica tissue + Super-hydro-grow polymer soil amendment in the control of bacterial wilt incidences in the field on solanaceous crops.

Author(s):  
E. K. Kago ◽  
Z. M. Kinyua ◽  
J. M. Maingi ◽  
P. O. Okemo

Aims: The aim of this study was to establish the effect of selected soil amendments on Ralstonia solanacearum isolates in greenhouse on selected solaneceous crops. Study Design:  The study was laid out as randomized complete block design (RCBD) in split pot arrangement for two seasons in the greenhouse. Place and Duration of Study: The experiment was carried out in Kenyattta University situated in Kiambu County about 20 km from Nairobi city along Nairobi-Thika road between July, 2017- September, 2017 and between November, 2017- January, 2018. Methodology: The three host crops of interest (potatoes, tomatoes and capsicum) were inoculated with prepared pure bacterial isolates; 18 (2T-Kiambu-Low Land), 71(2A-Nyeri-Low Land), 67 (2A-Nyeri-High Land), 83 (2T-Kirinyaga-Highland) and MX (18/71/67/83). Potatoes, tomatoes and capsicum were planted in pots each with a radius of 0.07 m (area 0.015 m2).The experiment had a total of 450 pots having a total area of 6.93 m2. The treatments were ChalimTM, Super-hydro-grow polymer + Metham sodium, Metham sodium, Metham sodium & Orange peel, Super-hydro-grow polymer, Brassica tissues, ChalimTM + Super-hydro-grow polymer, Brassica tissue + Orange peel, Metham sodium + Super-hydro-grow polymer and Control (no amendments). Results: There were significant differences (P≤0.05) in the bacterial wilt incidences in selected solaneceous crops between control and all the soil amendments used in season 1 and 2. Brassica tissue + Super-hydro-grow polymer was superior in reducing bacterial wilt incidences in selected solaneceous crops  in all the R. solanacearum isolates from Kenyan highlands and lowlands both in season 1 and 2. Conclusion: Organic and inorganic soil amendments could serve as a viable control of bacterial wilt in solaneceous crops caused by R. solanacearum in the greenhouse.


Author(s):  
E. K. Kago ◽  
Z. M. Kinyua ◽  
J. M. Maingi ◽  
P. O. Okemo

The popularity of using the Inorganic and organic soil amendments is based on the current status of soil degradation that led to  decline in  fertility  of soils, resulting to low yields. The objective of current study was to evalute different  organic and inorganic  soil amendments  and their effects on soil pH and macronutrients. The study was laid out as randomized complete block design (RCBD) in split plot arrangement for two seasons. The treatments were ChalimTM, Super-hydro-grow polymer + Metham sodium, Metham sodium, Metham sodium & Orange peel, Super-hydro-grow polymer, Brassica tissues, ChalimTM + Super-hydro-grow polymer, Brassica tissue + Orange peel, Metham sodium + Super-hydro-grow polymer and Control (no amendments).  Soils were sampled from each experimental site, dried and taken to laboratories for determination of soil chemical properties both at initial and at the end of the experiment. The soil physicochemical attributes assessed included: Soil pH, nitrogen, carbon, phosphorus, potassium and calcium. There was an significant increase (P≤0.05) in the concentration and availability of soil physicochemical characteristics after treatment which is an indicator of improved soil structure. Brassicae tissue +super hydrogrow polymer (BT+SHG) amendment was the best as it resulted to highest concentration   and availability of the mineral elements in the soil recording total nitrogen of 0.50 %, organic carbon 5.47 %, phosphorus 19.7 mg/kg, and potassium 1.37 %. The control exhibited the least impact on all the soil chemical properties. We recommend BT+SHG amendment to farmers to promote soil fertility which will consequently produce better yield.


Author(s):  
E. K. Kago ◽  
Z. M. Kinyua ◽  
J. M. Maingi ◽  
P. O. Okemo

Aims: This study was carried out to evaluate the influence of organic and inorganic soil amendments on soil moisture content and micronutrients in semi and arid areas.   Methodology: The study was laid out as randomized complete block design (RCBD) in split plot arrangement for two seasons. The treatments were ChalimTM, Super-hydro-grow polymer and Metham sodium, Metham sodium, Metham sodium + Orange peel, Super-hydro-grow polymer, Control, Brassica tissue, ChalimTM + Super-hydro-grow polymer, Brassica tissue + Orange peel and Metham sodium + Super-hydro-grow polymer. Soils were sampled from each experimental site, dried and taken to laboratories for determination of Zinc, Iron, Manganese and copper both at initial and at the end of the experiment using a SpectrAA- 40 atomic absorption spectrometer, PSC-56 programmable sample changer. Moisture content was calculated by subtracting total dry soil plus Petri dish weight from total wet soil plus Petri dish weight. Calculated moisture content was recorded in all samples across the two seasons for analysis. Results: There was a significant difference (p≤0.05) in the treatment effect on soil moisture content in except for MS and CM+OP in both season one and season two in the green house. A combination of both organic and inorganic soil amendments like BT+OP, BT+ SHG had the highest moisture content. There was significant difference (p≤0.05) in the soil amendments effect on the amount of Micronutrients in the beginning and end of the experiement. Conclusion: Through this study, it was realized significant difference (p≤0.05) in the soil amendments effect on soil moisture content in all the treatment in both seasons. BT +SHG soil amendment was superior in maintaining soil moisture content in both season 1 and 2. It is therefore recommended that Metham sodium should not be applied in very dry soil to avoid reduction of the moisture content. There was micronutrient increment in all the treatments. BT+ SHG was superior soil amendment in increment of micronutrients.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Paul M. Antonelli ◽  
Matthew G. Coghill ◽  
Wendy C. Gardner ◽  
Lauchlan H. Fraser

AbstractPhytostabilization is the use of plants and soil amendments to physically stabilize and remediate contaminated mine wastes and to control wind and water erosion in semiarid environments. The aim of this study was to evaluate two native bunchgrass species’ (Pseudoroegneria spicata and Festuca campestris) biomass accumulation and metals uptake response to locally available soil amendments (compost, wood ash and wood chips) to determine their suitability for phytostabilization at an alkaline copper mine tailings site in British Columbia, Canada. In the greenhouse, bunchgrasses important as forage for livestock and wildlife were grown in tailings with various ash–compost–wood chip combinations and evaluated using a randomized complete block design with 13 treatments and 10 replicates. Plants were harvested after 90 d, and tissues were analyzed for root and shoot biomass. Tissue samples (n = 3) from three treatment subsets (ash, compost, blend) were selected for elemental analysis. Biomass increased with increasing compost applications, and the response was greatest for P. spicata. Shoot molybdenum exceeded the maximum tolerable level for cattle and was significantly higher when grasses were grown on the ash treatment (183–202 mg kg−1) compared to the others (19.7–58.3 mg kg−1). Translocation and root bioconcentration factors were highest on the ash treatment (2.53–12.5 and 1.75–7.96, respectively) compared to the other treatments (0.41–3.43 and 1.47–4.79, respectively) and indicate that both species are ‘accumulators.’ The findings suggest that these bunchgrasses were not ideal candidates for phytostabilization due to high shoot tissue molybdenum accumulation, but provide important considerations for mine restoration in semiarid grassland systems.


2018 ◽  
Vol 46 (2) ◽  
pp. 189
Author(s):  
Muhammad Roiyan Romadhon ◽  
Surjono Hadi Sutjahjo ◽  
Dan Siti Marwiyah

<p><em></em><em>ABSTRACT<br /><br />Bacterial wilt and fruit cracking are serious problems in tomatoes cultivation in the lowland area. This research aimed to evaluate the yield of M4 generation of tomatoes in the field and the incidence of bacterial wilt disease and fruit cracking in low altitude. The research was conducted at the IPB Experimental Field in Leuwikopo, Dramaga, Bogor, from December 2015 to April 2016. The experiment used a randomized complete block design with three replications. The material consisted of 15 M4 genotypes and two controls (Berlian and Kefaminano 6). The results showed that genotype of M4/495 Lombok 1-9-2 (U2) has high  productivity. Genotype M4/990 Lombok 1-5-1 (U1) has  high weight  per fruit and resistant to fruit cracking. Genotype M4/495 GL2-8-10 (U2), M4/495 Kemir 1- 4-7 (U3), M4/495 STBGL 1-2-3 (U1) M4/990 Lombok 1-5-1 (U1), and  M4/495 STBGL 1-2-9 (U1) have the lowest incidence of bacterial wilt (0.00%). Two genotypes which have high productivity and resistant to fruit cracking are M4/495 Lombok 1-9-2 (U2) and M4/990 Lombok 1-5-1 (U1), and to be evaluated in a preliminary yield trial.<br /><br />Keywords: bacterial wilt, fruit cracking, genotype, yield<br /><br /></em></p>


2015 ◽  
Vol 52 (2) ◽  
pp. 105-114
Author(s):  
Anastasios Katsileros ◽  
Christos Koukouvinos

Abstract Variability among experimental plots may be a relevant problem in field genotype experiments, especially when a large number of entries are involved. Four field trials on 24 durum wheat genotypes were conducted in 2013/14 in order to evaluate the efficiency of Incomplete Block, Alpha and Augmented designs in comparison with the traditional Randomized Complete Block Design (RCBD). The results showed that the RCBD can be replaced by an Alpha design, which provides better control of variability among the experimental units when the number of treatments to be tested in an experiment exceeds twenty. The ranking of the genotypes across the four designs was not constant.


Author(s):  
Kareen Lynn E. Negado

This study evaluates the growth performance of lettuce (Lactuca sativa L.) utilizing various fermented products as organic fertilizers. Growth performance is determined through the plant’s weight and leaves and significant differences in growth among various treatments: (a) fish trash, (b) scrap seaweeds, (c) kangkong, and control groups urea (positive) and water (negative) was also determined. Kangkong leaves are fermented for 10 days, fish trash for 14 days and 1 month for seaweeds. Lettuce seeds are sown before transplanting (15 days after germination) into pots and placed in raised beds. Randomized complete block design is utilized in the experiment. Growth performance is measured through the number of leaves 10, 20, and 30 days after transplant and mass of plant upon harvest. After 30 days, the lettuce was harvested. Based on the findings, the soil and fermented products are acidic and the needed organic matter for optimum growth of lettuce are not sufficient as well as some nutrients of the fermented products. Among the organic fertilizers, kangkong at 30 ml performs best in terms of the growth performance of lettuce. Urea performs best in terms of the mass upon harvest. Significant differences exist in the mean number of leaves of lettuce treated with various amounts of organic fertilizers with the plants that receive urea. Lettuce produce more number of leaves and with the highest mass upon harvest when treated with urea compared with organic fertilizers applied after 30 days from transplant. Keywords: fermented kangkong; fish trash; growth performance; lettuce; scrap seaweeds


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 43-44
Author(s):  
Kirsten Nickles ◽  
Alejandro E Relling ◽  
Anthony Parker

Abstract Common weaning practices in today’s beef industry involve discontinuation of the cow-calf social and nutritional bond. When this bond is discontinued, atypical behaviors of walking and vocalizing are immediately observed in the calf that negatively affect calf welfare. Global positioning systems (GPS) provide an opportunity to quantify the effects of animal activity on welfare. Utilizing GPS technology, we are able to determine total distance walked, speed, total time walking, or total time not walking and the interactions with calf production. Thus, the objective of the present study was to evaluate the effects of a familiar trainer animal on calf production during weaning and more specifically, common weaning behaviors such as walking utilizing a Garmin® product. A total of 80 Angus x Simmental heifer calves were used in this study. In all four replications, heifer calves were allotted to each treatment group (n = 10), trainer animal or control (TR, CON) on the day of weaning. Calves in the TR group were placed on pasture at weaning with the familiar trainer animal, and control calves were placed in a similar size pasture without a trainer animal. Each calf was also fitted with their own GPS collar that recorded on days 0, 7, and 14 relative to initiation of the study for a full 24 hours before removal. Data were analyzed as a randomized complete block design with repeated measurements (SAS 9.4). Placing calves with a familiar trainer animal decreased the distance calves walked (P = 0.001) as well as the amount of time calves were walking (P = 0.001). Placing a familiar trainer animal with calves at weaning, therefore, has an effect on walking distance and amount of time calves devote to walking.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 999-1004 ◽  
Author(s):  
L. E. del Rio ◽  
C. A. Martinson ◽  
X. B. Yang

Field studies were conducted to evaluate the effectiveness of Sporidesmium sclerotivorum to control Sclerotinia stem rot of soybean (SSR) at Ames, Humboldt, and Kanawha, IA, between 1996 and 1998. Experimental plots (3 × 3 m) were infested with S. sclerotivorum macroconidia once at a rate of 0, 2, or 20 spores per cm2 in the fall of 1995 or the spring of 1996, under two crop rotation schemes. A randomized complete block design with four replications in each location was used. Plots infested with 20 spores per cm2 had 62% less SSR (P = 0.05) than control plots at Humboldt in 1996. No differences were detected between fall and spring applications. In 1998, plots treated with either 2 or 20 spores per cm2 had 51 to 63% less SSR (P = 0.05) than control plots at Ames and Kanawha. In 1998, SSR was completely suppressed in all plots at Humboldt, while the commercial field surrounding the experimental plots had 17% SSR. S. sclerotivorum was retrieved from all infested plots at all locations 2 years after infestation with sclerotia of Sclerotinia sclerotiorum as bait. At Humboldt, S. sclerotivorum was also retrieved from control plots. Two larger plots (10 × 10 m) were infested with 20 or 100 spores per cm2 in the fall of 1996 or spring of 1997 in six commercial fields. SSR incidence, which was measured in transects up to 20 m from the infested area at 5-m intervals, was reduced 56 to 100% (P = 0.05) in four fields compared with the surrounding uninfested areas in the commercial fields. Dispersal of the control agent was evident by the fact that SSR incidence gradually increased from the edge of the infested macroplots up to about 10 m into noninoculated areas of the commercial field. This paper constitutes the first report describing the biocontrol of a disease on field crops that may be employed economically.


2012 ◽  
Vol 52 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Parviz Sharifi Ziveh ◽  
Vahid Mahdavi

Abstract One of the factors limiting crop growth is weeds. The weeds lead to a reduced performance of the crops. Chemical control methods are considered appropriate for controlling weeds. Therefore, in the fight to control weeds in triticale, the performance of the dual-purpose herbicide sulfosulfuron(Apirus®), mesosulfuron + idosulfuron(Atlantis®), metsulfuron methyl+sulfosulfuron(Total®) with surfactant and isoproton + diflufenican(Panther®) from the sulfonylurea group, and narrow leaf herbicides clodinafobpropargyl( Topik®), pinoxaden(New Axial®), diclofop-methyl(Iloxan®), pinoxaden + clodinafob-propagyl (Traxos ®), fenoxaprop-pethyl + mefen-pyper-d-ethyl(PumaSuper®), tralkoksidim(Grasb®) with 1 liter oil, flam-prop-m-isopropyl(Suffix BW®), and control treatment without herbicides were evaluated. The test was carried out in a randomized complete block design with four replications. Spraying was carried out using a back sprayer. For evaluation of ocular damage, the European Weed Research Council (EWRC) standard method was used. According to the performed studies, the narrow leaves of wild oat and barnyard grass were the dominant weeds. Results showed that all herbicide, except the herbicide tralkoksidim, were effective in weed control. The triticale yield was maintained with the use of these herbicides and none of herbicide had an adverse effect on the crop. In the first weeks of herbicide use, the triticale leaves appeared pale but this problem resolved over time. It seems that the herbicides discussed in this paper can be used on the triticale plant.


Sign in / Sign up

Export Citation Format

Share Document