scholarly journals Bioethanol Production and Proximate Compostion of Waste Potatoes

Author(s):  
I. Saidu ◽  
A. M. Danjuma ◽  
A. Wakkala

Bioethanol can be produced from biological matter through processing of food wastes or crops meant for bioethanol production. This study used potato wastes from food vendors in Sokoto, Nigeria as a cheap and renewable carbon source for fermentation of ethanol. Saccharomyces cerevisiae was used to optimize the growth parameters and hydrolysis of potato wastes of the ethanol fermentation aimed at achieving maximum production of bioethanol. Following the analysis, results indicated that, a combination of 0.5, 1.0, 1.5, 2.0, 2.5% of H2SO4 at 121˚C for 20 min in an autoclave can yield complete hydrolysis of all starch contents of potato wastes. The average proximate composition of the potato wastes showed 13.94%,1.42%, 1.72%,1.38%,0.43% and 81.11% of Moisture, Ash, Fat, Crude protein, Fiber and Carbohydrate contents respectively. Positive confirmation of reducing sugars and bioethanol was achieved by using benedicts and Jones’ reagents respectively, Quantitative Test for reducing sugars indicated 124.9 mg/gm, 88.6 mg/gm, 61.45 mg/gm, 53.22 mg/gm, 47.23 mg/gm for 0.5%, 1.5%, 2.0%,2.5% and 3% concentrations respectively.

2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


2021 ◽  
Vol 14 (2) ◽  
pp. 43
Author(s):  
Putra Oktavianto ◽  
Risdiyana Setiawan ◽  
Ilhami Ariyanti ◽  
Muhammad Fadhil Jamil

BIOETHANOL PRODUCTION FROM COCONUT HUSK USING the WET GAMMA IRRADIATION METHOD. The use of coconut husk has only been used as a material for making handicrafts such as ropes, brooms, mats, and others or just burned. The combustion of coconut husk can cause air pollution. In fact, coconut husk can be used as a raw material for bioethanol production so that the beneficial value of coconut husk will also increase. One way of bioethanol production from coconut husk is by irradiating the coconut husk. The coconut husk irradiation technique to be carried out in this study is the wet irradiation technique. Wet irradiation is carried out to accelerate the process of bioethanol production because at the time of irradiation, cellulose has been hydrolyzed and glucose has been formed so that it is more efficient in time and use of the material so that the cellulose hydrolysis process is not necessary. The coconut husk samples were wet because they were mixed with 4% NaOH and were irradiated using a gamma irradiator from STTN-BATAN Yogyakarta with a dose of 30 kGy and 50 kGy and 0 kGy (or without irradiation). Then the sample is fermented with the fungus Saccharomyces Cerevisiae from tape yeast to form ethanol. Ethanol is purified and then analyzed for concentrations using pycnometric and refractometric methods. The result is that the highest ethanol content is without irradiation (0 kGy), this is due to the low dosage used. However, the main point in this wet method research is evidence of hydrolysis of cellulose by the formation of gluoxane after irradiated wet coconut husk, and with Fehling A and B analysis, brown deposits are seen proving that glucose has been formed.


2021 ◽  
Author(s):  
Nashwa Fetyan ◽  
Abo El-Khair B. El-Sayed ◽  
Fatma M. Ibrahim ◽  
Yasser Attia ◽  
Mahmoud W. Sadik

Abstract Microalgal biomass is one of the most promising third-generation feedstocks for bioethanol production because it contains significantly reduced sugar amounts which, by separate hydrolysis and fermentation, can be used as a source for ethanol production. In this study, the defatted microalgal biomass of Nannochloropsis oculata (NNO-1 UTEX Culture LB 2164) was subjected to bioethanol production through acid digestion and enzymatic treatment before being fermented by Saccharomyces cerevisiae (NRRLY-2034). For acid hydrolysis (AH), the highest carbohydrate yield 252.84 mg/g DW was obtained with 5.0% (v/v) H2SO4 at 121°C for 15 min for defatted biomass cultivated mixotrophically on SBAE with respect to 207.41 mg/g DW for defatted biomass cultivated autotrophically (control treatment), Whereas, the highest levels of reducing sugars was obtained With 4.0%(v/v) H2SO4 157.47 ± 1.60 mg/g DW for defatted biomass cultivated mixotrophically in compared with 135.30 mg/g DW for the defatted control treatment. The combination of acid hydrolysis 2.0% (v/v) H2SO4 followed by enzymatic treatment (AEH) increased the carbohydrate yields to 268.53 mg/g DW for defatted biomass cultivated mixotrophically on SBAE with respect to 177.73 mg/g DW for the defatted control treatment. However, the highest levels of reducing sugars were obtained with 3.0% (v/v) H2SO4 followed by enzyme treatment gave 232.39 ± 1.77 for defatted biomass cultivated mixotrophically on SBAE and 150.75 mg/g DW for the defatted control treatment. The sugar composition of the polysaccharides showed that glucose was the principal polysaccharide sugar (60.7%-62.49%) of N. oculata defatted biomass. Fermentation of the hydrolysates by Saccharomyces cerevisiae for the acid pretreated defatted biomass samples gave ethanol yield of 0.86 g/l (0.062 g/g sugar consumed) for control and 1.17 g/l (0.069 g/g sugar consumed) for SBAE mixotrophic. Whereas, the maximum ethanol yield of 6.17 ± 0.47 g/l (0.26 ± 0.11 g/g sugar consumed) was obtained with samples from defatted biomass grown mixotrophically (SBAE mixotrophic) pretreated with acid coupled enzyme hydrolysis.


2020 ◽  
Vol 51 (1) ◽  
pp. 57-61
Author(s):  
Antonio Gil ◽  
M. Beltran Siñani

The bioethanol that is produced worldwide is mostly obtained from agricultural crops such as sugarcane and corn. However, it has negative environmental effects, so the option of producing bioethanol from agricultural waste arises. This work evaluates the feasibility to produce second generation bietanol from oranges residues (peel and bagasse) produced in the province of Chapare, Bolivia. The estimation is carried out from the reducing sugars, determined by the DNS method, individual sugars, determined by HPLC, produced by acidic and enzymatic hydrolysis of the residues. Similarly, the amount of ethanol produced by fermentation of the samples is quantified. Regarding the results obtained, the best alternative in terms of bioethanol production is the enzymatic hydrolysis. An economic and environmental impact evaluation are also included considering the production of bioethanol from real orange residues.


2020 ◽  
Vol 47 (4) ◽  
pp. 92-102
Author(s):  
A. V. Ayanwale ◽  
E.C. Ogbonnaya ◽  
F. O. Arimoro ◽  
U. N. Keke ◽  
V. I. Chukwuemeka

An eight weeks feeding trial was carried out to evaluate the influence of supplementing different levels of Saccharomyces cerevisiae in diets on survival rates and some growth parameters of Heteroclarias juveniles under laboratory conditions. S. cerevisiae was included in the diets at 4 levels of 0.00 (control: Aquamax), 5.00, 10.00 and 15.00% with 3 replicates each. Each of the experimental tanks was filled with 25 litres of borehole water and stocked with 30 randomly selected juveniles of Heteroclarias. The growth and physico-chemical parameters were determined weekly, while survival rates were monitored daily using standard experimental procedures. Exchange of water was done twice a week during the study period. The juveniles were fed to satiation daily in the morning and evening. The proximate analysis of S.cerevisiae supplemented diets fed to Heteroclarias juveniles were higher in moisture composition. The results of the mean total length and standard length showed that there were no significant (p>0.05) differences between the juveniles fed the control diet and the S. cerevisiae diets. However, mean body weight were influenced (p< 0.05) with juveniles fed 10 % S. cerevisiae diet having better body weight (31.36±4.13g) compared to the other treatments. The survival rate (97%) of Heteroclarias juveniles fed with 5% S. cerevisiae level was significantly (p< 0.05) highest. Most of the physicochemical parameters of cultured water of Heteroclarias juveniles fed with all the diets were not affected (p>0.05); except the Biochemical Oxygen Demand (BOD) that was significantly (p<0.05) different. Moisture ash, crude protein and oil extract were all significantly (p<0.05) affected having lower ash and crude protein contents (2.15±0.01 and 45.00±0.58) respectively. The inclusion of 10% S. cerevisiae in the diet of Heteroclarias juveniles improved growth performance.


2011 ◽  
pp. 223-230
Author(s):  
Darjana Ivetic ◽  
Vesna Vasic ◽  
Marina Sciban ◽  
Mirjana Antov

This paper analyzes some chemical pretreatments of sugar beet shreds concerning generated waste flows and yield of reducing sugars obtained by enzymatic hydrolysis of pretreated material. Waste flows produced in pretreatments of sugar beet shreds originated from pectin and lignin removal from raw material. Suitability of substrates prepared in single and two-step pretreatment procedure for enzymatic hydrolysis was determined based on the yield of reducing sugars released by cellulase action on them, while different possibilities of processing of wastewaters were discussed based on the characteristic of waste flows.


2019 ◽  
Author(s):  
Chem Int

This study investigated the nutraceutical potential of ripe and unripe plantain fruit peels which are commonly discarded as food wastes. Proximate and mineral analyses of the samples were performed as per the standard methods of the Association of Official Analytical Chemists. Preliminary phytochemical screening of aqueous, acetone and methanol extracts of the peels was also carried out in accordance to standard methods. From the results of the study, acetone extract of the unripe peel showed the presence of eight phytochemicals while its ripe peel showed the presence of four. Aqueous and ethanol extracts of both peels showed the presence of same phytochemicals i.e., terpenoids, cardiac glycosides, phenols, flavonoids, alkaloids, reducing sugars and saponins. Meanwhile, tannins was absent in all three solvent extracts of both peels. Fat, ash, crude fibre and carbohydrate contents of the unripe peel were higher than those of the ripe. However, moisture and protein contents of the ripe peel were significantly higher (P &lt; 0.05) than those of the unripe. Of all the nine essential minerals assayed (K, Na, Mg, Ca, P, Fe, Zn, Mn, Cu), concentrations of all except calcium were significantly higher (P &lt; 0.05) in the unripe peel than those of the ripe peel. Notably, none of the heavy metals (Co, Cr, Cd, Pb, Ni) assayed was detected in both samples. This study concludes that ripe and unripe plantain fruit peels could serve as promising sources of nutrients and bioactive compounds essential for the health of both livestock and humans.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2021 ◽  
Author(s):  
Yuxiao Dong ◽  
Dongshen Tong ◽  
Laibin Ren ◽  
Xingtao Chen ◽  
Hao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document