scholarly journals Estimation of Solder Ball Collapse Height in Semiconductor Packaging Using Theoretical and Solid Modeling Techniques

Author(s):  
Jefferson Talledo

Semiconductor packages using solder balls as interconnect to the printed circuit board (PCB) are very popular especially in mobile products like smart phones. Recent requirement to make the package much thinner is very challenging. The solder ball collapse height after the solder ball is reflowed on the package substrate metal pad would need to be tightly controlled and aligned with the required height to meet the target overall package thickness. Another challenge is that the package has to be developed in a short period of time. In this study, theoretical and solid modeling techniques were developed to estimate the solder ball collapse height and compared with actual evaluation results. With these, the solder ball collapse height could be quickly estimated to make the package design and development faster avoiding several trial evaluations on different combinations of solder ball size, substrate pad solder mask opening diameter and solder mask thickness. Based on the estimation results, using these techniques showed good agreement with actual solder ball height measurements and have now been successfully used in coming up with final package designs in a fast and cost-effective way.

2013 ◽  
Vol 479-480 ◽  
pp. 524-529
Author(s):  
C.T. Pan ◽  
F.T. Hsu ◽  
C.C. Nien ◽  
Z.H. Liu ◽  
Y.J. Chen ◽  
...  

Small and efficient energy harvesters, as a renewable power supply, draw lots of attention in the last few years. This paper presents a planar rotary electromagnetic generator with copper coils fabricated by using printed circuit board (PCB) as inductance and Nd-Fe-B magnets as magnetic element. Coils are fabricated on PCB, which is presumably cost-effective and promising methods. 28-pole Nd-Fe-B magnets with outer diameter of 50 mm and thickness of 2 mm was sintered and magnetized, which can provide magnetic field of 1.44 Tesla. This harvester consists of planar multilayer with multi-pole coils and multi-pole permanent magnet, and the volume of this harvester is about 50x50x2.5 mm3. Finite element analysis is used to design energy harvesting system, and simulation model of the energy harvester is established. In order to verify the simulation, experiment data are compared with simulation result. The PCB energy harvester prototype can generate induced voltage 0.61 V and 13.29mW output power at rotary speed of 4,000 rpm.


Author(s):  
Adedotun Oluwakanyinsola Owojori ◽  
Ibukunoluwa A. Adebanjo ◽  
Samson A. Oyetunji

Considering a system capable of identifying abnormalities in people's walking conditions in real-time, simply by studying his/her walking profile over a short period of time is a phenomenal breakthrough in the field of biotechnology. Such abnormalities could be as a result of injury, old age, or disease termed gait which could be analyzed using the pressure mapping technology. Pressure points in the feet of an injured person as he/she walks is analyzed by sets of sensors (capacitive sensors) carefully design with a rectangular 5.1cm by 2cm parallel aluminium plate and placed on developed footwear with a uniform distance of 1cm across the dielectric material. The output of the pre-processing stage gives varying values which are calibrated and sent to the microcontroller. All placed on a portable sized Printed Circuit Board (PCB) making it moveable from one place to another (that is, mobile), is the pre-processing circuit that converts measured or evaluated result to the transmittable signal through a Mobile Communication System which can be received on a Personal Computer (PC) in form of a periodic chat and/ or report. The result of the analysis is shown both in simulation and hardware implementation of the system


2018 ◽  
Vol 2018 (1) ◽  
pp. 000384-000388
Author(s):  
Brian Curran ◽  
Jacob Reyes ◽  
Christian Tschoban ◽  
Ivan Ndip ◽  
Klaus-Dieter Lang ◽  
...  

Abstract Increasing demand for high bandwidth wireless satellite connections and telecommunications has resulted in interest in steerable antenna arrays in the GHz frequency range. These applications require cost-effective integration technologies for high frequency and high power integrated circuits (ICs) using GaAs, for example. In this paper, an integration platform is proposed, that enables GaAs ICs to be directly placed on a copper core inside cavities of a high frequency laminate for optimal cooling purposes. The platform is used to integrate a K-Band receiver front-end, composed of four GaAs ICs, with linear IF output power for input powers above −40dBm and a temperature of 42°C during operation.


2019 ◽  
Vol 5 (9) ◽  
pp. FSO416 ◽  
Author(s):  
Paul Rice ◽  
Sayali Upasham ◽  
Badrinath Jagannath ◽  
Roshan Manuel ◽  
Madhavi Pali ◽  
...  

Sweat-based analytics have recently caught the attention of researchers and medical professionals alike because they do not require professionally trained personnel or invasive collection techniques to obtain a sample. The following presents a small form-factor biosensor for reporting physiological ranges of cortisol present in ambient sweat (8–151 ng/ml). This device obtains cortisol measurements through low volumes of unstimulated sweat from the user’s wrist. We designed a potentiostatic circuit on a printed circuit board to perform electrochemical testing techniques. The detection modality developed for quantifying sensor response to varying cortisol concentrations is a current based electrochemical technique, chronoamperometry (CA). From the results, the sensor can detect cortisol in the physiologically relevant ranges of cortisol; thus, the sensor is a noninvasive, label free, cost-effective solution for tracking cortisol levels for circadian diagnostics.


Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 525-541 ◽  
Author(s):  
Partha Pratim Ray ◽  
Dinesh Dash ◽  
Debashis De

Purpose Background: Every so often, one experiences different physically unstable situations which may lead to possibilities of suffering through vicious physiological risks and extents. Dynamic physiological activities are such a key metric that they are perceived by means of measuring galvanic skin response (GSR). GSR represents impedance of human skin that frequently changes based on different human respiratory and physical instability. Existing solutions, paved in literature and market, focus on the direct measurement of GSR by two sensor-attached leads, which are then parameterized against the standard printed circuit board mechanism. This process is sometimes cumbersome to use, resulting in lower user experience provisioning and adaptability in livelihood activities. The purpose of this study is to validate the novel development of the cost-effective GSR sensing system for affective usage for smart e-healthcare. Design/methodology/approach This paper proposes to design and develop a flexible circuit strip, populated with essential circuitry assemblies, to assess and monitor the level of GSR. Ordinarily, this flexible system would be worn on the back palm of the hand where two leads would contact two sensor strips worn on the first finger. Findings The system was developed on top of Pyralux. Initial goals of this work are to design and validate a flexible film-based GSR system to detect an individual’s level of human physiological activities by acquiring, amplifying and processing GSR data. The measured GSR value is visualized “24 × 7” on a Bluetooth-enabled smartphone via a pre-incorporated application. Conclusion: The proposed sensor-system is capable of raising the qualities such as adaptability, user experience, portability and ubiquity for possible application of monitoring of human psychodynamics in a more cost-effective way, i.e. less than US$50. Practical implications Several novel attributes are envisaged in the development process of the GSR system that made it different from and unique as compared to the existing alternatives. The attributes are as follows: (i) use of reproductive sensor-system fabrication process, (ii) use of flexible-substrate for hosting the system as proof of concept, (iii) use of miniaturized microcontroller, i.e. ATTiny85, (iv) deployment of energy-efficient passive electrical circuitry for noise filtering, (v) possible use case scenario of using CR2032 coin battery for provisioning powering up the system, (vi) provision of incorporation of internet of things (IoT)-cloud integration in existing version while fixing related APIs and (vii) incorporation of heterogeneous software-based solutions to validate and monitor the GSR output such as MakerPlot, Arduino IDE, Fritzing and MIT App Inventor 2. Originality/value This paper is a revised version R1 of the earlier reviewed paper. The proposed paper provides novel knowledge about the flexible sensor system development for GSR monitoring under IoT-based environment for smart e-healthcare.


Author(s):  
Carl Nail ◽  
Larry Rice

Abstract A PCB trace was repeatedly cracking in the same location. Visual inspection showed cracking there and at structurally similar locations, with solder mask missing from one side of the trace of interest. Fracture analysis suggested that these issues and etch pitting caused crack initiation, followed by fatigue failure that ultimately led to full fracture. A FIB section of a second failure reinforced the finding that the fundamental cracking mechanism was fatigue.


Author(s):  
Satish Parupalli ◽  
Keith Newman ◽  
Mudasir Ahmad

Abstract Some standard characterization techniques (solder ball pull, solder ball shear, etc.) exist for the assessment of solder ball mechanical fracture strength; however, it is not clear if these test methods would also provide characterization of printed circuit board (PCB) pad cratering susceptibility. This paper provides an overview of test methods being investigated by a PCB pad crater industry working group. The scope of this industry working group is two-fold: standardization of PCB pad crater crack characterization and measurement methods and development of a quantitative quality metric for PCB pad cratering. Though the test methods were successful in creating pad craters; there was not enough distinction between the various laminate material types based on the output parameters. Based on the readings from Phase 1 study and available literature, the team is in the process of completing the Phase 2 study which will be reported at a later stage.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000246-000251
Author(s):  
Andreas Olofsson ◽  
Daniel S. Green ◽  
Jeffrey Demmin

Abstract DARPA is leading a new thrust to leverage mainstream semiconductor design approaches to enable the rapid and cost-effective integration of heterogeneous device technologies. This represents a leap ahead beyond the monolithic silicon approach that has served the semiconductor industry well, but which now creates prohibitive cost and design issues at leading-edge nodes, as well as performance constraints without the benefits of broad device technology options. DARPA's Common Heterogeneous Integration and IP Reuse Strategies (CHIPS) program will develop interface standards, IP reuse methodologies, and modular design approaches with the goal of making heterogeneous integration as straightforward as printed circuit board design and assembly, without compromising device performance. An overview of the program's vision, goals, and progress to date is presented here.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Sandeep Chaturvedi ◽  
Shiban K. Koul

Design, fabrication, and test results of a novel 3-layer RF package using a commonly available high frequency laminate are presented in this paper. The developed package can be manufactured using standard multilayer printed circuit board (PCB) manufacturing techniques making it cost effective for commercial applications. The package exhibits excellent RF characteristics up to 6 GHz.


Sign in / Sign up

Export Citation Format

Share Document