scholarly journals Study of the Influence of Local Strains of Lactobacillus on the Experimental Model of Ulcerative Colitis

Author(s):  
G. J. Kutlieva ◽  
N. A. Elova ◽  
B. I. Turaeva ◽  
D. K. Nurmukhamedova ◽  
B. S. Tulaganov

The article is devoted to one of the most important effects of local strains of lactic acid bacteria - the detection of anti-inflammatory action. For this purpose, studies were conducted on an experimental model of ulcerative colitis caused in experimental animals (mice). The data proving that the effect of various probiotic bacteria is unequal are presented.  The ability of probiotic lactic acid bacteria in vitro and in vivo systems to influence the production of pro - and anti-inflammatory cytokines, to stimulate antimicrobial, anti-inflammatory, and protective effects have been shown. It is shown that it is necessary to study the specific effect of local lactobacillus strains on anti-inflammatory properties for a more adequate, effective selection of probiotic drugs in the treatment of intestinal ulcers. Data have been presented proving the positive effects of probiotic bacteria on the wound key.

Author(s):  
Hüseyin Eseceli

Probiotics are living microorganisms, meaning “for life” and consist of two parts, “pro” and “biota,” and prebiotics are indigestible carbohydrates that increase the number and activities of colon bacteria and the effectiveness of probiotics. Probiotic consumption has been reported to have many positive effects, such as increasing immune response, balancing the colony, and increasing endogenous defense capacity of cells. The aim of prebiotics is to grow probiotic bacteria, thus improving the gastrointestinal and immune systems. Recent studies have shown that probiotics may have an impact on gastrointestinal system diseases. It has been shown to stimulate the proliferation of beneficial microorganisms in prebiotics and assist in the probiotic effect. The most commonly used probiotics and prebiotics are lactic acid bacteria that are types of Lactobacillus and Bifidobacterium. Prebiotics are naturally present in nutrients. Probiotics and prebiotics are used to prevent many diseases.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Armin Mooranian ◽  
Thomas Foster ◽  
Corina M Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
...  

Introduction: Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. Methods: Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. Results and Conclusion: Capsules’ morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


2014 ◽  
Vol 685 ◽  
pp. 486-489 ◽  
Author(s):  
Yan Yan Wu ◽  
Gang You ◽  
Lai Hao Li ◽  
Xian Qing Yang ◽  
Ya Wei

Inoculation with compound lactobacillus in the low-salt pickled fish, fermented and dried to produce cured fish. The paper studied the effects of inoculating compound lactobacillus on the pH, total volatile basic nitrogen (TVB-N), amino acid nitrogen content (AA-N) and total acid content of salted fish quality. The results showed that, compared with the non-vaccinated groups (CK), The cured fish inoculated lactobacillus had a lower pH and TVB-N content, higher the amino acid nitrogen content and total acid content. Inoculated compound lactic acid bacteria into salted fish, to a certain extent, could improve the nutritional value and edible value, which had positive effects on the fish quality.


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
Dongjun Kim ◽  
Mun-ju Cho ◽  
Seungchan Cho ◽  
Yongjun Lee ◽  
Sung June Byun ◽  
...  

Lactic acid bacteria (LAB) are generally recognized as safe (GRAS) and serve as probiotic bacteria when consumed in adequate amounts. Here, we report the complete genome sequence of Lactobacillus reuteri Byun-re-01, isolated from mouse small intestine.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Céline Ratajczak ◽  
Catherine Duez ◽  
Corinne Grangette ◽  
Pierre Pochard ◽  
André-Bernard Tonnel ◽  
...  

2019 ◽  
Vol 7 (10) ◽  
pp. 407 ◽  
Author(s):  
Hadar Kimelman ◽  
Moshe Shemesh

Live probiotic bacteria obtained with food are thought to have beneficial effects on a mammalian host, including their ability to reduce intestinal colonization by pathogens. To ensure the beneficial effects, the probiotic cells must survive processing and storage of food, its passage through the upper gastrointestinal tract (GIT), and subsequent chemical ingestion processes until they reach their target organ. However, there is considerable loss of viability of the probiotic bacteria during the drying process, in the acidic conditions of the stomach, and in the high bile concentration in the small intestine. Bacillus subtilis, a spore-forming probiotic bacterium, can effectively maintain a favorable balance of microflora in the GIT. B. subtilis produces a protective extracellular matrix (ECM), which is shared with other probiotic bacteria; thus, it was suggested that this ECM could potentially protect an entire community of probiotic cells against unfavorable environmental conditions. Consequently, a biofilm-based bio-coating system was developed that would enable a mutual growth of B. subtilis with different lactic acid bacteria (LAB) through increasing the ECM production. Results of the study demonstrate a significant increase in the survivability of the bio-coated LAB cells during the desiccation process and passage through the acidic environment. Thus, it provides evidence about the ability of B. subtilis in rescuing the desiccation-sensitive LAB, for instance, Lactobacillus rhamnosus, from complete eradication. Furthermore, this study demonstrates the antagonistic potential of the mutual probiotic system against pathogenic bacteria such as Staphylococcus aureus. The data show that the cells of B. subtilis possess robust anti-biofilm activity against S. aureus through activating the antimicrobial lipopeptide production pathway.


Sign in / Sign up

Export Citation Format

Share Document