scholarly journals Determination of the Levels of Plasma Vitamin A and β-Carotene and vitamin E in Mastitic Cows

Author(s):  
İnan KAYA ◽  
Aysel GÜVEN
2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 993
Author(s):  
Su Lee Kuek ◽  
Azmil Haizam Ahmad Tarmizi ◽  
Raznim Arni Abd Razak ◽  
Selamat Jinap ◽  
Maimunah Sanny

This study aims to evaluate the influence of Vitamin A and E homologues toward acrylamide in equimolar asparagine-glucose model system. Vitamin A homologue as β-carotene (BC) and five Vitamin E homologues, i.e., α-tocopherol (AT), δ-tocopherol (DT), α-tocotrienol (ATT), γ-tocotrienol (GTT), and δ-tocotrienol (DTT), were tested at different concentrations (1 and 10 µmol) and subjected to heating at 160 °C for 20 min before acrylamide quantification. At lower concentrations (1 µmol; 431, 403, 411 ppm, respectively), AT, DT, and GTT significantly increase acrylamide. Except for DT, enhancing concentration to 10 µmol (5370, 4310, 4250, 3970, and 4110 ppm, respectively) caused significant acrylamide formation. From linear regression model, acrylamide concentration demonstrated significant depreciation over concentration increase in AT (Beta = −83.0, R2 = 0.652, p ≤ 0.05) and DT (Beta = −71.6, R2 = 0.930, p ≤ 0.05). This study indicates that different Vitamin A and E homologue concentrations could determine their functionality either as antioxidants or pro-oxidants.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 483
Author(s):  
Olaf Sommerburg ◽  
Susanne Hämmerling ◽  
S. Philipp Schneider ◽  
Jürgen Okun ◽  
Claus-Dieter Langhans ◽  
...  

Rationale: Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leads to impaired pancreatic function and therefore reduced intestinal absorption of lipids and fat-soluble vitamins especially in patients with CF developing pancreatic insufficiency (PI). Previous studies showed that CFTR modulator therapy with lumacaftor-ivacaftor (LUM/IVA) in Phe508del-homozygous patients with CF results in improvement of pulmonary disease and thriving. However, the effects of LUM/IVA on plasma concentration of the lipid soluble vitamins A and E remain unknown. Objectives: To investigate the course of plasma vitamin A and E in patients with CF under LUM/IVA therapy. Methods: Data from annual follow-up examinations of patients with CF were obtained to assess clinical outcomes including pulmonary function status, body mass index (BMI), and clinical chemistry as well as fat-soluble vitamins in Phe508del-homozygous CF patients before initiation and during LUM/IVA therapy. Results: Patients with CF receiving LUM/IVA improved substantially, including improvement in pulmonary inflammation, associated with a decrease in blood immunoglobulin G (IgG) from 9.4 to 8.2 g/L after two years (p < 0.001). During the same time, plasma vitamin A increased significantly from 1.2 to 1.6 µmol/L (p < 0.05), however, levels above the upper limit of normal were not detected in any of the patients. In contrast, plasma vitamin E as vitamin E/cholesterol ratio decreased moderately over the same time from 6.2 to 5.5 µmol/L (p < 0.01). Conclusions: CFTR modulator therapy with LUM/IVA alters concentrations of vitamins A and vitamin E in plasma. The increase of vitamin A must be monitored critically to avoid hypervitaminosis A in patients with CF.


1956 ◽  
Vol 63 (3) ◽  
pp. 458-460 ◽  
Author(s):  
J. Gillman ◽  
K. Barbara Norton ◽  
D. E. A. Rivett ◽  
D. A. Sutton
Keyword(s):  

2008 ◽  
Vol 101 (6) ◽  
pp. 794-797 ◽  
Author(s):  
Pulin C. Sarma ◽  
Bhabesh C. Goswami ◽  
Krishna Gogoi ◽  
Harsha Bhattacharjee ◽  
Arun B. Barua

The objective of the present study was to determine marginal vitamin A deficiency (VAD) by testing the hydrolysis of retinoyl glucuronide (RAG) to retinoic acid (RA) in children. Previous studies in rats showed that hydrolysis occurred when rats were vitamin A deficient. Children (n 61) aged 3–18 years, were divided into two groups, I and II. Blood was collected from the children in Group I (n 19) who were not dosed with RAG. Children in Group II (n 42) were administered all-trans retinoyl glucuronide (RAG) orally, and blood was collected 4 h after the dose. All serum samples were analysed for retinoids and carotenoids. RA was detected in serum only when serum retinol was < 0·85 μmol/l. Thus, hydrolysis of RAG to RA occurred in children with VAD or marginal VAD. Serum retinol was < 0·35 μmol/l in twenty-one children, 0·35–0·7 μmol/l in twenty-three children, 0·7–0·9 μmol/l in eleven children and >1 μmol/l in six children. Mean serum retinol in sixty-one children was 0·522 (sd 0·315) μmol/l. Mean β-carotene (0·016 (sd 0·015) μmol/l) was far below normal compared to the level of lutein (0·176 (sd 0·10) μmol/l) in sixty-one children. A low β-carotene level might be due to a low intake of carotene but high demand for vitamin A. The RAG hydrolysis test may prove to be a useful approach for the determination of marginal VAD with no clinical or subclinical signs of VAD. High prevalence of VAD amongst certain communities in Assam cannot be ruled out.


2013 ◽  
Vol 96 (6) ◽  
pp. 1407-1413 ◽  
Author(s):  
Linda Butler Thompson ◽  
Karen Schimpf ◽  
Steve Baugh

Abstract The method presented is for quantification of α-tocopherol (vitamin E), vitamin E acetate, vitamin A acetate, and vitamin A palmitate in infant formula and adult/pediatric nutritionals. The entire lipid fraction, including vitamins A and E, is extracted from product with iso-octane after products are mixed with methanol, which precipitates proteins and disrupts micelles freeing lipids for extraction. Vitamin A palmitate, vitamin A acetate, and vitamin E acetate are separated from α-tocopherol on a 3 cm silica column with a 1% methylene chloride, 0.06% isopropanol in iso-octane mobile phase; eluted onto a 20 cm silica column; and, after a column switch, further separated on the 20 cm column before UV detection at 325 nm (vitamin A palmitate and vitamin A acetate) and 285 nm (vitamin E acetate). α-Tocopherol is further separated from other extraneous compounds on the 3 cm silica column and detected by fluorescence at excitation and emission wavelengths of 295 and 330 nm, respectively. Quantification limits in ready-to-feed products were estimated to be 80 IU/L for vitamin A palmitate, 207 International Units (IU)/L for vitamin A acetate, 2.4 mg/L for vitamin E acetate, and &lt;0.15 mg/L for α-tocopherol. Over-spike recoveries and intermediate precision averaged 100.4 and 2.09% RSD for vitamin A palmitate, 100.4 and 1.52% RSD for vitamin E acetate, and 99.6 and 3.02% RSD for α-tocopherol. Vitamin A acetate spike recovery data averaged 96.6%, and the intermediate precision for the only product fortified with vitamin A acetate was 2.75% RSD.


2016 ◽  
Vol 197 ◽  
pp. 457-465 ◽  
Author(s):  
David C. Woollard ◽  
Anja Bensch ◽  
Harvey Indyk ◽  
Adrienne McMahon

2001 ◽  
Vol 84 (2) ◽  
pp. 354-360
Author(s):  
Vincenzo Pucci ◽  
Francesca Bugamelli ◽  
Roberto Mandrioli ◽  
Maria A Raggi

Abstract The concentrations of vitamin A, β-carotene, and all-trans-retinoic acid in oral preparations were determined in a single analysis by a method based on isocratic, reversed-phase liquid chromatography (LC). The LC system consisted of a C18 column, a mobile phase of acetonitrile, dichloromethane, methanol, and water and a UV detector set at 330 nm. The linearity ranges were 25–250 ng/mL for trans-retinoic acid and vitamin A, and 100–1000 ng/mL for β-carotene. This LC method for the determination of retinoids is simple, precise, and accurate. No extraction procedure is required before the chromatographic analysis; only a suitable dilution is necessary. The method proved to be reliable, fast, and economical. Furthermore, this method is indicative of stability, because it allows for the determination of degradation products such as 13-cis-retinoic acid.


Sign in / Sign up

Export Citation Format

Share Document