scholarly journals Lactiplantibacillus plantarum 1201 Inhibits Intestinal Infection of Salmonella enterica subsp. Enterica serovar Typhimurium Strain ATCC 13311 in Mice with High-Fat Diet

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Zhongyue Ren ◽  
Lingling Peng ◽  
Shufang Chen ◽  
Yi Pu ◽  
Huihui Lv ◽  
...  

Salmonella Typhimurium is widely distributed in food. It can colonise the gastrointestinal tract after ingestion, causing lamina propria edema, inflammatory cell infiltration, and mucosal epithelial decomposition. A high-fat diet (HFD) can induce an inflammatory response, but whether HFD can increase the infection level of S. Typhimurium is unknown. We established a model of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311 ATCC 13311 infection in healthy adult mice with a maintenance diet (MD) or HFD to explore the effect of Lactiplantibacillus plantarum 1201 intervention on S. Typhimurium ATCC 13311 colonization and its protective effects on mice. HFD exacerbated the infection of S. Typhimurium ATCC 13311, while the intervention of L. plantarum 1201 effectively mitigated this process. L. plantarum 1201 can reduce the colonies of S. ATCC 13311 in the intestines and tissues; and reduce intestinal inflammation by down-regulating the level of TLR4/NF-κB pathway related proteins in serum and the expression of related inflammatory factors in the colon and jejunum. Since L. plantarum 1201 can inhibit the colonization of S. Typhimurium ATCC 13311 and relieve inflammation in HFD, current research may support the use of L. plantarum 1201 to prevent S. Typhimurium infection.

2004 ◽  
Vol 186 (24) ◽  
pp. 8516-8523 ◽  
Author(s):  
Sean R. Murray ◽  
Karim Suwwan de Felipe ◽  
Pamela L. Obuchowski ◽  
Jeremy Pike ◽  
David Bermudes ◽  
...  

ABSTRACT Loss of the Salmonella MsbB enzyme, which catalyzes the incorporation of myristate destined for lipopolysaccharide in the outer membrane, results in a strong phenotype of sensitivity to salt and chelators such as EGTA and greatly diminished endotoxic activity. MsbB− salmonellae mutate extragenically to EGTA-tolerant derivatives at a frequency of 10−4 per division. One of these derivatives arose from inactivation of somA, which suppresses sensitivity to salt and EGTA. Here we show that a second mode of MsbB− suppression is a RecA-dependent deletion between two IS200 insertion elements present in Salmonella enterica serovar Typhimurium strain ATCC 14028 but not in two other wild-type strains, LT2 and SL1344, which lack one of the IS200 elements. This deletion occurs spontaneously in wild-type and MsbB− strain 14028 salmonellae and accounts for about one-third of all of the spontaneous suppressors of MsbB− in strain 14028. It spans the region corresponding to 17.7 to 19.9 centisomes, which includes somA, on the sequenced map of Salmonella LT2 (136 ORFs in that strain; ATCC 14028 and other strains showed variability in this region). In addition to conferring EGTA resistance correlated with somA, the deletion confers a MacConkey galactose resistance phenotype on MsbB− Salmonella, indicating that at least one additional gene (distinct from somA) within the deletion is responsible for this phenotype. In the wild type, the deletion mutant grows with normal exponential growth rate in Luria broth but is chlorate resistant and does not grow on citrate agar. The deletion strains have lost hydrogen sulfide production, nitrate reductase activity, and gas production from glucose fermentation.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2072-2083 ◽  
Author(s):  
Leann Clark ◽  
Charlotte A. Perrett ◽  
Layla Malt ◽  
Caryn Harward ◽  
Suzanne Humphrey ◽  
...  

Most studies on Salmonella enterica serovar Typhimurium infection focus on strains ATCC SL1344 or NTCC 12023 (ATCC 14028). We have compared the abilities of these strains to induce membrane ruffles and invade epithelial cells. S. Typhimurium strain 12023 is less invasive and induces smaller membrane ruffles on MDCK cells compared with SL1344. Since the SPI-1 effector SopE is present in SL1344 and absent from 12023, and SL1344 sopE mutants have reduced invasiveness, we investigated whether 12023 is less invasive due to the absence of SopE. However, comparison of SopE+ and SopE− S. Typhimurium strains, sopE deletion mutants and 12023 expressing a sopE plasmid revealed no consistent relationship between SopE status and relative invasiveness. Nevertheless, absence of SopE was closely correlated with reduced size of membrane ruffles. A PprgH–gfp reporter revealed that relatively few of the 12023 population (and that of the equivalent strain ATCC 14028) express SPI-1 compared to other S. Typhimurium strains. Expression of a PhilA–gfp reporter mirrored that of PprgH–gfp in 12023 and SL1344, implicating reduced signalling via the transcription factor HilA in the heterogeneous SPI-1 expression of these strains. The previously unrecognized strain heterogeneity in SPI-1 expression and invasiveness has important implications for studies of Salmonella infection.


2021 ◽  
Author(s):  
Joe W. E. Moss ◽  
Jessica O Williams ◽  
Wijdan Al-Ahmadi ◽  
Victoria O'Morain ◽  
Yee-Hung Chan ◽  
...  

Atherosclerosis, an inflammatory disorder of the vasculature and the underlying cause of cardiovascular disease, is responsible for one in three global deaths. Consumption of active food ingredients such as omega-3...


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0201540 ◽  
Author(s):  
Roberta Budriesi ◽  
Fabio Vivarelli ◽  
Donatella Canistro ◽  
Rita Aldini ◽  
Clara Babot Marquillas ◽  
...  

2002 ◽  
Vol 46 (5) ◽  
pp. 1604-1606 ◽  
Author(s):  
Cheng-Hsun Chiu ◽  
Chishih Chu ◽  
Lin-Hui Su ◽  
Wan-Yu Wu ◽  
Tsu-Lan Wu

ABSTRACT A Salmonella enterica serovar Typhimurium strain that harbored a plasmid carrying a TEM-1-type β-lactamase gene was isolated from the blood and cerebrospinal fluid of an infant with meningitis. This 3.2-kb plasmid was further characterized to be a nonconjugative pGEM series cloning vector containing a foreign insert. The strain was likely laboratory derived and contaminated the environment before it caused the infection.


2017 ◽  
Vol 5 (46) ◽  
Author(s):  
Najwa Syahirah Roslan ◽  
Shagufta Jabeen ◽  
Nurulfiza Mat Isa ◽  
Abdul Rahman Omar ◽  
Mohd Hair Bejo ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Typhimurium is one of several well-categorized Salmonella serotypes recognized globally. Here, we report the whole-genome sequence of S. Typhimurium strain UPM 260, isolated from a broiler chicken.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3607
Author(s):  
Bojan Stojnić ◽  
Alba Serrano ◽  
Lana Sušak ◽  
Andreu Palou ◽  
M. Luisa Bonet ◽  
...  

Anti-obesity activity has been reported for beta-carotene (BC) supplementation at high doses and metformin (MET). We studied whether BC treatment at a closer to dietary dose and MET treatment at a lower than therapeutic dose are effective in ameliorating unwanted effects of an obesogenic diet and whether their combination is advantageous. Obesity-prone mice were challenged with a high-fat diet (HFD, 45% energy as fat) for 4 weeks while receiving a placebo or being treated orally with BC (3 mg/kg/day), MET (100 mg/kg/day), or their combination (BC+MET); a fifth group received a placebo and was kept on a normal-fat diet (10% energy as fat). HFD-induced increases in body weight gain and inguinal white adipose tissue (WAT) adipocyte size were attenuated maximally or selectively in the BC+MET group, in which a redistribution towards smaller adipocytes was noted. Cumulative energy intake was unaffected, yet results suggested increased systemic energy expenditure and brown adipose tissue activation in the treated groups. Unwanted effects of HFD on glucose control and insulin sensitivity were attenuated in the treated groups, especially BC and BC+MET, in which hepatic lipid content was also decreased. Transcriptional analyses suggested effects on skeletal muscle and WAT metabolism could contribute to better responses to the HFD, especially in the MET and BC+MET groups. The results support the benefits of the BC+MET cotreatment.


Sign in / Sign up

Export Citation Format

Share Document