scholarly journals Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Shunichi Kobayashi ◽  
Shota Atsumi ◽  
Kazunori Ikebukuro ◽  
Koji Sode ◽  
Ryutaro Asano

Abstract Background Cyanobacteria are engineered via heterologous biosynthetic pathways to produce value-added chemicals via photosynthesis. Various chemicals have been successfully produced in engineered cyanobacteria. Chemical inducer-dependent promoters are used to induce the expression of target biosynthetic pathway genes. A chemical inducer is not ideal for large-scale reactions owing to its high cost; therefore, it is important to develop scaling-up methods to avoid their use. In this study, we designed a green light-inducible alcohol production system using the CcaS/CcaR green light gene expression system in the cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803). Results To establish the green light-inducible production of isobutanol and 3-methyl-1-butanol (3MB) in PCC 6803, keto-acid decarboxylase (kdc) and alcohol dehydrogenase (adh) were expressed under the control of the CcaS/CcaR system. Increases in the transcription level were induced by irradiation with red and green light without severe effects on host cell growth. We found that the production of isobutanol and 3MB from carbon dioxide (CO2) was induced under red and green light illumination and was substantially repressed under red light illumination alone. Finally, production titers of isobutanol and 3MB reached 238 mg L−1 and 75 mg L−1, respectively, in 5 days under red and green light illumination, and these values are comparable to those reported in previous studies using chemical inducers. Conclusion A green light-induced alcohol production system was successfully integrated into cyanobacteria to produce value-added chemicals without using expensive chemical inducers. The green light-regulated production of isobutanol and 3MB from CO2 is eco-friendly and cost-effective. This study demonstrates that light regulation is a potential tool for producing chemicals and increases the feasibility of cyanobacterial bioprocesses. Graphical Abstract

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dwi Ariyanti ◽  
Kazunori Ikebukuro ◽  
Koji Sode

Abstract Background The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. Results One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. Conclusion An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


2013 ◽  
Vol 7 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Koichi Abe ◽  
Kotone Miyake ◽  
Mayumi Nakamura ◽  
Katsuhiro Kojima ◽  
Stefano Ferri ◽  
...  

2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Fabian D. Conradi ◽  
Rui-Qian Zhou ◽  
Sabrina Oeser ◽  
Nils Schuergers ◽  
Annegret Wilde ◽  
...  

ABSTRACTMotile strains of the unicellular cyanobacteriumSynechocystissp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates. The flocs are formed from strands of linked cells, sometimes packed into dense clusters but also containing voids with very few cells. Cells within the dense clusters show signs of nutrient stress, as judged by the subcellular distribution of green fluorescent protein (GFP)-tagged Vipp1 protein. We analyzed the effects on flocculation of a series of mutations that alter piliation and motility, including Δhfq, ΔpilB1, ΔpilT1, and ΔushAmutations and deletion mutations affecting major and minor pilins. The extent of flocculation is increased in the hyperpiliated ΔpilT1mutant, but active cycles of pilus extension and retraction are not required for flocculation. Deletion of PilA1, the major subunit of type IV pili, has no effect on flocculation; however, flocculation is lost in mutants lacking an operon coding for the minor pilins PilA9 to -11. Therefore, minor pilins appear crucial for flocculation. We show that flocculation is a tightly regulated process that is promoted by blue light perception by the cyanobacteriochrome Cph2. Floc formation also seems to be a highly cooperative process. A proportion of nonflocculating Δhfqcells can be incorporated into wild-type flocs, but the presence of a high proportion of Δhfqcells disrupts the large-scale architecture of the floc.IMPORTANCESome bacteria form flocs, which are multicellular floating assemblages of many thousands of cells. Flocs have been relatively little studied compared to surface-adherent biofilms, but flocculation could play many physiological roles, be a crucial factor in marine carbon burial, and enable more efficient biotechnological cell harvesting. We studied floc formation and architecture in the model cyanobacteriumSynechocystissp. strain PCC 6803, using mutants to identify specific cell surface structures required for floc formation. We show that floc formation is regulated by blue and green light perceived by the photoreceptor Cph2. The flocs have a characteristic structure based on strands of linked cells aggregating into dense clusters. Cells within the dense clusters show signs of nutrient stress, pointing to a disadvantage of floc formation.


Author(s):  
Nan Lu ◽  
Chenglin Zhang ◽  
Wenjie Zhang ◽  
Haoran Xu ◽  
Yuhong Li ◽  
...  

Corynebacterium glutamicum is one of the important industrial microorganisms for production of amino acids and other value-added compounds. Most expression vectors used in C. glutamicum are based on inducible promoter (Ptac or Ptrc) activated by isopropyl-β-D-thiogalactopyranoside (IPTG). However, these vectors seem unsuitable for large-scale industrial production due to the high cost and toxicity of IPTG. Myo-inositol is an ideal inducer because of its non-toxicity and lower price. In this study, a myo-inositol-inducible expression vector pMI-4, derived from the expression vector pXMJ19, was constructed. Besides the original chloramphenicol resistance gene cat, multiple cloning sites, and rrnB terminator, the pMI-4 (6,643 bp) contains the iolRq cassette and the myo-inositol-inducible promoter PiolT1. The pMI-4 could stably replicate in the C. glutamicum host. Meanwhile, the non-myo-inositol degradation host strain C. glutamicumΔiolGΔoxiCΔoxiDΔoxiE for maintaining the pMI-4 was developed. Overexpression of hemAM and hemL using pMI-4 resulted in a significant accumulation of 5-aminolevulinic acid, indicating its potential application in metabolic engineering and industrial fermentation.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 428
Author(s):  
Gerardo Zapata-Sifuentes ◽  
Pablo Preciado-Rangel ◽  
Reyna Roxana Guillén-Enríquez ◽  
Francisca Sánchez Bernal ◽  
Ramon Jaime Holguin-Peña ◽  
...  

The present investigation aimed to evaluate the effect of Chitosan-Indole Butyric Acid (IBA) in the seed of Salicornia bigelovii under field conditions in Sonora, Mexico. During two vegetative cycles (2018/2019–2019/2020), cuttings of S. bigelovii were treated with 100 and 50% Chitosan from shrimp exoskeletons and indole butyric acid at 0.937 and 1.25 g·kg−1 and placed in basins under conditions of the Sonora desert, Mexico. Variables were measured: seed production, physicochemical analysis and lipid profile of the seed. The results affected significant increases (p < 0.05) in the evaluated variables, highlighting the treatment based on Chitosan 100%—IBA 0.937 g·kg−1. The results based on chitosan and IBA in cuttings, are a biostimulant in the morpho-physiology, yield production, and lipid content of S. bigelovii. Large-scale studies as a production system should be considered in further studies.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 420
Author(s):  
Yi Ma ◽  
Liu Cui ◽  
Meng Wang ◽  
Qiuli Sun ◽  
Kaisheng Liu ◽  
...  

Bacterial ghosts (BGs) are empty cell envelopes possessing native extracellular structures without a cytoplasm and genetic materials. BGs are proposed to have significant prospects in biomedical research as vaccines or delivery carriers. The applications of BGs are often limited by inefficient bacterial lysis and a low yield. To solve these problems, we compared the lysis efficiency of the wild-type protein E (EW) from phage ΦX174 and the screened mutant protein E (EM) in the Escherichia coli BL21(DE3) strain. The results show that the lysis efficiency mediated by protein EM was improved. The implementation of the pLysS plasmid allowed nearly 100% lysis efficiency, with a high initial cell density as high as OD600 = 2.0, which was higher compared to the commonly used BG preparation method. The results of Western blot analysis and immunofluorescence indicate that the expression level of protein EM was significantly higher than that of the non-pLysS plasmid. High-quality BGs were observed by SEM and TEM. To verify the applicability of this method in other bacteria, the T7 RNA polymerase expression system was successfully constructed in Salmonella enterica (S. Enterica, SE). A pET vector containing EM and pLysS were introduced to obtain high-quality SE ghosts which could provide efficient protection for humans and animals. This paper describes a novel and commonly used method to produce high-quality BGs on a large scale for the first time.


Author(s):  
Huijuan Wang ◽  
Sha Bai ◽  
Pu Zhao ◽  
Tian Li ◽  
Chenjun Ning ◽  
...  

Synthesis of syngas (CO, H2) by photocatalytic reduction of CO2 and H2O represents an eco-friendly pathway for large-scale CO2 utilization for the production of chemical raw materials with high added...


2016 ◽  
Vol 106 (09) ◽  
pp. 631-636
Author(s):  
H. Prinzhorn ◽  
M. Zenker ◽  
R. Sporrer ◽  
P. Prof. Nyhuis

Die hohe Störfanfälligkeit bei der Montage großskaliger Produkte verlangt eine kurzfristige Auswahl von Maßnahmen zur Reaktion auf Störungen, um Auswirkungen wie Lieferterminverspätungen oder Auslastungsverluste zu reduzieren. Die Nutzung von Flexibilitätspotenzialen eines Produktionssystems stellt einen Ansatz dar, um diese Herausforderung zu bewältigen. Dieser Fachbeitrag zeigt auf, welche Flexibilitätspotenziale in diesem speziellen Umfeld zur Verfügung stehen und genutzt werden können. &nbsp; Assembling large-scale products involves frequent process interruptions why in order to reduce the impact of interruptions, a short-term response is necessary to reduce delivery delays and idle times of resources. An approach for challenge this represents the flexibility of a production system. Regarding the environment of large-scale product assembly, it has to be shown which potentials of flexibility are able to use in a short-term manner.


2021 ◽  
Author(s):  
Somdip Dey ◽  
Suman Saha ◽  
Amit Singh ◽  
Klaus D. Mcdonald-Maier

<div><div><div><p>Food safety is an important issue in today’s world. Traditional agri-food production system doesn’t offer easy traceability of the produce at any point of the supply chain, and hence, during a food-borne outbreak, it is very difficult to sift through food production data to track produce and origin of the outbreak. In recent years, blockchain based food production system has resolved this challenge, however, none of the proposed methodologies makes the food production data easily accessible, traceable and verifiable by consumers or producers using mobile/edge devices. In this paper, we propose FoodSQRBlock (Food Safety Quick Response Block), a blockchain technology based framework, which digitizes the food production information, and makes it easily accessible, traceable and verifiable by the consumers and producers by using QR codes. We also propose a large scale integration of FoodSQRBlock in the cloud to show the feasibility and scalability of the framework, and experimental evaluation to prove that.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document