scholarly journals Transcriptome Response to Cadmium Exposure in Barley (Hordeum vulgare L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Kintlová ◽  
Jan Vrána ◽  
Roman Hobza ◽  
Nicolas Blavet ◽  
Vojtěch Hudzieczek

Cadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots. Among them, we identified genes related to reactive oxygen species metabolism, cell wall formation and maintenance, ion membrane transport and stress response. One of the most upregulated genes was PLANT CADMIUM RESISTACE 2 (HvPCR2) known to be responsible for heavy metal detoxification in plants. Surprisingly, in the transcriptomic data we identified four different copies of the HvPCR2 gene with a specific pattern of upregulation in individual tissues. Heterologous expression of all five barley copies in a Cd-sensitive yeast mutant restored cadmium resistance. In addition, four HvPCR2 were located in tandem arrangement in a single genomic region of the barley 5H chromosome. To our knowledge, this is the first example showing multiplication of the PCR2 gene in plants.

Genome ◽  
2020 ◽  
Author(s):  
Megan Alexandra House ◽  
Clarence J Swanton ◽  
Lewis N Lukens

Recent studies indicate that thiamethoxam (TMX), a neonicotinoid insecticide, can affect plant responses to environmental stressors, such as neighboring weeds. The molecular mechanisms behind both stable and environmentally-specific responses to TMX likely involve genes related to defense/stress responses. We investigated the effect of a TMX seed treatment on global gene expression in maize coleoptiles both under normal conditions and under low red to far-red (R/FR) light stress induced by the presence of neighboring plants. The neighboring plant treatment upregulated genes involved in biotic and abiotic stress responses and also affected specific photosynthesis and cell-growth related genes. Low R:FR light may enhance maize resistance to herbivores and pathogens. TMX appears to compromise resistance. The TMX treatment stably repressed many genes that encode proteins involved in biotic stress responses, as well as cell-growth genes. Notably, TMX effects on many genes’ expression were conditional on the environment. In response to low R:FR, plants treated with TMX engage genes in the JA, and other stress-related, response pathways. Neighboring weeds may condition TMX treated plants to become more stress tolerant.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252899
Author(s):  
Jiayou Liu ◽  
Jie Zhang ◽  
Sun Ha Kim ◽  
Hyun-Sook Lee ◽  
Enrico Marinoia ◽  
...  

Brassica rapa is an important leafy vegetable that can potentially accumulate high concentrations of cadmium (Cd), posing a risk to human health. The aim of the present study was to identify cadmium detoxifying molecular mechanisms in B. rapa using a functional cloning strategy. A cDNA library constructed from roots of B. rapa plants treated with Cd was transformed into the Cd sensitive yeast mutant strain DTY167 that lacks the yeast cadmium factor (YCF1), and resistant yeast clones were selected on Cd containing media. Two hundred genes potentially conferring cadmium resistance were rescued from the surviving yeast clones and sequenced. Sequencing analysis revealed that genes encoding for metallothionein (MT)1, MT2a, MT2b and MT3, and phytochelatin synthase (PCS)1 and PCS2 accounted for 35.5%, 28.5%, 4%, 11.3%, 18.7% and 2%, respectively of the genes identified. MTs and PCSs expressing DTY167 cells showed resistance to Cd as well as to Zn. PCS1 expressing yeast cells were also more resistant to Pb compared to those expressing MTs or PCS2. RT-PCR results showed that Cd treatment strongly induced the expression levels of MTs in the root and shoot. Furthermore, the different MTs and PCSs exhibited tissue specific expression. The results indicate that MTs and PCS genes potentially play a central role in detoxifying Cd and other toxic metals in B. rapa.


2020 ◽  
Vol 17 ◽  
Author(s):  
Perumal Subramaniana ◽  
Jaime Jacqueline Jayapalan ◽  
Puteri Shafinaz Abdul-Rahmanb

A proteome is an efficient rendition of a genome, unswervingly controlling various cancer processes. Molecular mechanisms of several cancer processes have been unraveled by proteomic approach. Thus far, numerous tumors of diverse status have been investigated by two-dimensional electrophoresis. Numerous biomarkers have been recognized and precise categorization of apparent lesions has led to the timely detection of various cancers in persons at peril. Currently used pioneering approaches and technologies in proteomics have led to highly sensitive assays of cancer biomarkers and improved the early diagnosis of various cancers. The discovery of novel and definite biomarker signatures further widened our perceptive of the disease and novel potent drugs for efficient and aimed therapeutic outcomes in persistent cancers have emerged. However, a major limitation, even today, of proteomics is resolving and quantifying the proteins of low abundance. Despite the rapid development of proteomic technologies and their applications in cancer management, annulling the shortcomings of present proteomic technologies and development of better methods are still desirable. The main objectives of this review are to discuss the developing aspects, merits and demerits of pharmacoproteomics, redox proteomics, novel approaches and therapies being used for various types of cancer based on proteome studies.


2021 ◽  
Vol 22 (12) ◽  
pp. 6557
Author(s):  
Li-Ying Ren ◽  
Heng Zhao ◽  
Xiao-Ling Liu ◽  
Tong-Kai Zong ◽  
Min Qiao ◽  
...  

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1065
Author(s):  
Reinhard Mischke ◽  
Julia Metzger ◽  
Ottmar Distl

Congenital fibrinogen disorders are very rare in dogs. Cases of afibrinogenemia have been reported in Bernese Mountain, Bichon Frise, Cocker Spaniel, Collie, Lhasa Apso, Viszla, and St. Bernard dogs. In the present study, we examined four miniature wire-haired Dachshunds with afibrinogenemia and ascertained their pedigree. Homozygosity mapping and a genome-wide association study identified a candidate genomic region at 50,188,932–64,187,680 bp on CFA15 harboring FGB (fibrinogen beta chain), FGA (fibrinogen alpha chain), and FGG (fibrinogen gamma-B chain). Sanger sequencing of all three fibrinogen genes in two cases and validation of the FGA-associated mutation (FGA:g.6296delT, NC_006597.3:g.52240694delA, rs1152388481) in pedigree members showed a perfect co-segregation with afibrinogenemia-affected phenotypes, obligate carriers, and healthy animals. In addition, the rs1152388481 variant was validated in 393 Dachshunds and samples from 33 other dog breeds. The rs1152388481 variant is predicted to modify the protein sequence of both FGA transcripts (FGA201:p.Ile486Met and FGA-202:p.Ile555Met) leading to proteins truncated by 306 amino acids. The present data provide evidence for a novel FGA truncating frameshift mutation that is very likely to explain the cases of severe bleeding due to afibrinogenemia in a Dachshund family. This mutation has already been spread in Dachshunds through carriers before cases were ascertained. Genetic testing allows selective breeding to prevent afibrinogenemia-affected puppies in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raphael Severino Bonadio ◽  
Larissa Barbosa Nunes ◽  
Patricia Natália S. Moretti ◽  
Juliana Forte Mazzeu ◽  
Stefano Cagnin ◽  
...  

AbstractMost biological features that occur on the body after death were already deciphered by traditional medicine. However, the molecular mechanisms triggered in the cellular microenvironment are not fully comprehended yet. Previous studies reported gene expression alterations in the post-mortem condition, but little is known about how the environment could influence RNA degradation and transcriptional regulation. In this work, we analysed the transcriptome of mouse brain after death under three concealment simulations (air exposed, buried, and submerged). Our analyses identified 2,103 genes differentially expressed in all tested groups 48 h after death. Moreover, we identified 111 commonly upregulated and 497 commonly downregulated genes in mice from the concealment simulations. The gene functions shared by the individuals from the tested environments were associated with RNA homeostasis, inflammation, developmental processes, cell communication, cell proliferation, and lipid metabolism. Regarding the altered biological processes, we identified that the macroautophagy process was enriched in the upregulated genes and lipid metabolism was enriched in the downregulated genes. On the other hand, we also described a list of biomarkers associated with the submerged and buried groups, indicating that these environments can influence the post-mortem RNA abundance in its particular way.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Benjamin I. Laufer ◽  
J. Antonio Gomez ◽  
Julia M. Jianu ◽  
Janine M. LaSalle

Abstract Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
He-ping Jiang ◽  
Bing-bing Gao ◽  
Wen-hui Li ◽  
Ming Zhu ◽  
Chun-fang Zheng ◽  
...  

Responses ofUlva proliferaandUlva linzato Cd2+stress were studied. We found that the relative growth rate (RGR), Fv/Fm, and actual photochemical efficiency of PSII (Yield) of twoUlvaspecies were decreased under Cd2+treatments, and these reductions were greater inU. proliferathan inU. linza.U. proliferaaccumulated more cadmium thanU. linzaunder Cd2+stress. WhileU. linzashowed positive osmotic adjustment ability (OAA) at a wider Cd2+range thanU. prolifera.U. linzahad greater contents of N, P, Na+, K+, and amino acids thanU. prolifera. A range of parameters (concentrations of cadmium, Ca2+, N, P, K+, Cl−, free amino acids (FAAs), proline, organic acids and soluble protein, Fv/Fm, Yield, OAA, and K+/Na+) could be used to evaluate cadmium resistance inUlvaby correlation analysis. In accordance with the order of the absolute values of correlation coefficient, contents of Cd2+and K+, Yield, proline content, Fv/Fm, FAA content, and OAA value ofUlvawere more highly related to their adaptation to Cd2+than the other eight indices. Thus,U. linzahas a better adaptation to Cd2+thanU. prolifera, which was due mainly to higher nutrient content and stronger OAA and photosynthesis inU. linza.


Sign in / Sign up

Export Citation Format

Share Document