scholarly journals Recent Progress Regarding the Evolution and Molecular Aspect of Insect Gall Formation

Author(s):  
Antoine Guiget ◽  
Seiji Takeda ◽  
Tomoko Hirano ◽  
Ohishima Issei ◽  
Masa H. Sato

Galls are characteristic plant structures formed by hypertrophy (excessive increase in cell size) and/or hyperplasia (cell proliferation) induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to the insects. To form unique gall structures, all-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development is still largely unknown because of the difficulty of studying non-model plants in the wild. Recent progress in next-generation sequencing has allowed us to determine the structure of biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the evolutionary aspects of gall-inducing life histories and their adaptive significance for insects and plants. Then, we briefly summarize recent progress regarding the molecular aspects of insect gall formation.

2021 ◽  
Vol 22 (17) ◽  
pp. 9424
Author(s):  
Seiji Takeda ◽  
Tomoko Hirano ◽  
Issei Ohshima ◽  
Masa H. Sato

Galls are characteristic plant structures formed by cell size enlargement and/or cell proliferation induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to insects. To form unique gall structures, gall-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development remain largely unknown due to the difficulties associated with the study of non-model plants in the wild. Recent advances in next-generation sequencing have allowed us to determine the biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the adaptive significance of galls for insects and plants. Thereafter, we summarize recent progress regarding the molecular aspects of insect gall formation.


2020 ◽  
Author(s):  
Mayuko Hamada ◽  
Noriyuki Satoh ◽  
Konstantin Khalturin

ABSTRACTCnidarians are one of the oldest eumetazoan taxa, and are thought to be a sister group to all bilaterians. In spite of comparatively simple morphology, cnidarians exhibit diverse body forms and life histories. In addition, many cnidarian species establish symbiotic relationships with microalgae. Various Hydra species have been employed as model organisms since the 18th century. Introduction of transgenic and knock-down technologies made them ideal experimental systems for studying cellular and molecular mechanisms involved in regeneration, body-axis formation, senescence, symbiosis, and holobiosis. In order to provide an important reference for genetic studies, the Hydra magnipapillata genome was sequenced. However, the initial published version of the H. magnipapillata genome did not achieve assembly continuity comparable to those of other model systems, due mainly to a large number of transposable elements. For almost a decade, the highly fragmented genome assembly of H. magnipapillata (scaffold N50=128Kb) has remained the only genomic resource for this genus with several dozen species. Here we report a draft 280-Mbp genome assembly for Hydra viridissima strain A99, a symbiotic, early diverging member of the Hydra clade, with a scaffold N50 of 1.1 Mbp. The H. viridissima genome contains an estimated 21,476 protein-coding genes. Comparative analysis of Pfam domains and orthologous proteins highlights characteristic features of H. viridissima, such as diversification of innate immunity genes that are important for host-symbiont interactions. Thus, the Hydra viridissima assembly provides an important hydrozoan genome reference that will facilitate symbiosis research and better comparisons of metazoan genome architectures.


2017 ◽  
Vol 4 (8) ◽  
pp. 170577 ◽  
Author(s):  
Leah Springate ◽  
Timothy R. Frasier

Fertilization represents a critical stage in biology, where successful alleles of a previous generation are shuffled into new arrangements and subjected to the forces of selection in the next generation. Although much research has been conducted on how variation in morphological and behavioural traits lead to variation in fertilization patterns, surprisingly little is known about fertilization at a molecular level, and specifically about how genes expressed on the sperm and egg themselves influence fertilization patterns. In mammals, several genes have been identified whose products are expressed on either the sperm or the egg, and which influence the fertilization process, but the specific mechanisms are not yet known. Additionally, in 2014 an interacting pair of proteins was identified: ‘Izumo’ on the sperm, and ‘Juno’ on the egg. With the identification of these genes comes the first opportunity to understand the molecular aspects of fertilization in mammals, and to identify how the genetic characteristics of these genes influence fertilization patterns. Here, we review recent progress in our understanding of fertilization and gamete compatibility in mammals, which should provide a helpful guide to researchers interested in untangling the molecular mechanisms of fertilization and the resulting impacts on population biology and evolutionary processes.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1863-1873 ◽  
Author(s):  
J Slate ◽  
P M Visscher ◽  
S MacGregor ◽  
D Stevens ◽  
M L Tate ◽  
...  

Abstract Recent empirical evidence indicates that although fitness and fitness components tend to have low heritability in natural populations, they may nonetheless have relatively large components of additive genetic variance. The molecular basis of additive genetic variation has been investigated in model organisms but never in the wild. In this article we describe an attempt to map quantitative trait loci (QTL) for birth weight (a trait positively associated with overall fitness) in an unmanipulated, wild population of red deer (Cervus elaphus). Two approaches were used: interval mapping by linear regression within half-sib families and a variance components analysis of a six-generation pedigree of >350 animals. Evidence for segregating QTL was found on three linkage groups, one of which was significant at the genome-wide suggestive linkage threshold. To our knowledge this is the first time that a QTL for any trait has been mapped in a wild mammal population. It is hoped that this study will stimulate further investigations of the genetic architecture of fitness traits in the wild.


Koedoe ◽  
2004 ◽  
Vol 47 (1) ◽  
Author(s):  
R.F. Terblanche ◽  
H. Van Hamburg

Due to their intricate life histories and the unique wing patterns and colouring the butterflies of the genus Chrysoritis are of significant conservation and aesthetic value. Thisoverview probes into practical examples of butterfly life history research applicable to environmental management of this relatively well-known invertebrate group in South Africa. Despite the pioneer work on life histories of Chrysoritis in the past, more should be done to understand the life history of the butterflies in the wild, especially their natural host plants and the behaviour of adults and larvae. A system of voucher specimens of host plants should be introduced in South Africa. Although various host plant species in nature are used by the members of Chrysoritis, including the Chrysoritis chrysaor group, the choice of these in nature by each species is significant for conservation management and in the case of Chrysoritis aureus perhaps even as a specific characteristic.A revision of the ant genus Crematogaster will benefit the conservation management of Chrysoritis species since some of these ant species may consist of a number of specieswith much more restricted distributions than previously thought. Rigorous quantified tudies of population dynamics of Chrysoritis butterflies are absent and the introductionof such studies will benefit conservation management of these localised butterflies extensively.


2018 ◽  
Vol 66 (2) ◽  
pp. 93 ◽  
Author(s):  
Hongji Sun ◽  
Xianbo Zuo ◽  
Long Sun ◽  
Peng Yan ◽  
Fang Zhang ◽  
...  

The Chinese alligator (Alligator sinensis) is an endemic and rare species in China, and is considered to be one of the most endangered vertebrates in the world. It is known to hibernate, an energy-saving strategy against cold temperatures and food deprivation. Changes in gene expression during hibernation remain largely unknown. To understand these complex seasonal adaptive mechanisms, we performed a comprehensive survey of differential gene expression in heart, skeletal muscle, and kidney of hibernating and active Chinese alligators using RNA-Sequencing. In total, we identified 4780 genes differentially expressed between the active and hibernating periods. GO and KEGG pathway analysis indicated the likely role of these differentially expressed genes (DEGs). The upregulated DEGs in the active Chinese alligator, CSRP3, MYG and PCKGC, may maintain heart and skeletal muscle contraction, transport and storage of oxygen, and enhance the body’s metabolism, respectively. The upregulated DEGs in the dormant Chinese alligator, ADIPO, CIRBP and TMM27, may improve insulin sensitivity and glucose/lipid metabolism, protect cells against harmful effects of cold temperature and hypoxia, regulate amino acid transport and uptake, and stimulate the proliferation of islet cells and the secretion of insulin. These results provide a foundation for understanding the molecular mechanisms of the seasonal adaptation required for hibernation in Chinese alligators, as well as effective information for other non-model organisms research.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Lori A. McEachern

Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.


Author(s):  
Daniel P. Depledge ◽  
Tomohiko Sadaoka ◽  
Werner J. D. Ouwendijk

Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, the lack of suitable in vitro models to study VZV latency have seriously hampered molecular studies of viral latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and have redefined our understanding of VZV latency and factors that initiate reactivation. Together, these findings pave the way for a new era of research that may finally unravel the precise molecular mechanisms that govern latency. In this review, we will summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.


2020 ◽  
Vol 14 ◽  
Author(s):  
Maggie M. Chvilicek ◽  
Iris Titos ◽  
Adrian Rothenfluh

Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.


2021 ◽  
Vol 15 ◽  
Author(s):  
Camilla Roselli ◽  
Mani Ramaswami ◽  
Tamara Boto ◽  
Isaac Cervantes-Sandoval

Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.


Sign in / Sign up

Export Citation Format

Share Document