scholarly journals Amorphous and crystalline CaCO3 phase transformation at high solid/liquid ratio – Insight to a novel binder system

2021 ◽  
pp. 126465
Author(s):  
Isabel Galan ◽  
Bettina Purgstaller ◽  
Cyrill Grengg ◽  
Bernhard Müller ◽  
Martin Dietzel
Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 217
Author(s):  
Marin Ugrina ◽  
Martin Gaberšek ◽  
Aleksandra Daković ◽  
Ivona Nuić

Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment.


2020 ◽  
Vol 10 (23) ◽  
pp. 8440
Author(s):  
Lavinia Lupa ◽  
Laura Cocheci ◽  
Bogdan Trica ◽  
Adina Coroaba ◽  
Adriana Popa

A closed-cycle technology regarding the use of an exhausted Pd-based adsorbent as a photocatalyst in the degradation process of phenol is presented. Pd (II) represents a precious metal of great economic importance. Its obtained from natural sources become more difficult to achieve. Therefore, also considering the regulations of the “circular economy,” its recovery from secondary sources turn out to be a stringent issue in the last years. Pd(II) ions are removed from aqueous solution through adsorption onto Florisil (an inorganic solid support—magnesium silicate) impregnated with Cyphos IL 101 (trihexyl tetradecyl phosphonium chloride). It was observed that the presence of the ionic liquid (IL) in the adsorbent structure doubles the adsorption efficiency of the studied materials. The newly obtained Pd-based photocatalyst was exhaustively characterized and was used in the degradation process of phenol from aqueous solutions. The phenol degradation process was studied in terms of the nature of the photocatalyst used, time of photodegradation and solid: liquid ratio. It was observed that both the presence of IL and Pd lead to an increase in the efficiency of the phenol degradation process. The new Pd-based photocatalyst could be efficiently used in more cycles of phenol photodegradation processes. When is used as a photocatalyst the Florisil impregnated with IL and loaded with 2 mg/g of Pd, a degree of mineralization of 93.75% is obtained after 180 min of irradiation of a phenol solution having a concentration of 20 mg/L and using a solid:liquid ratio = 1:1.


2013 ◽  
Vol 805-806 ◽  
pp. 281-285
Author(s):  
Zhong Xu

Bioconversion of potato pulp to fuel ethanol, analysing the potato pulp chemical composition and determining the potato pulp in the role of microorganism produce ethanol under the best conditions is the major research. An analysis of the chemical composition of potato pulp showed that : the basic ingredients are Protein (9.72%), Starch (25.52%), Cellulose (17.90%). The effects of ethanol production rate of solid-liquid ratio, fermentation temperature, inoculumconcertration, fermentation time. The results showed that: the best conditions producting ethanol from potato pulp obtained by single factor experiments are: solid-liquid ratio: 1:15, fermentation temperature: 35°C, inoculumconcertration: 3mL, fermentation time: 20h. Under this occasion, the ethanol production rate was 0.183mL·g-1.


2013 ◽  
Vol 690-693 ◽  
pp. 1086-1090
Author(s):  
Jie Zhang ◽  
Qiong Qiong Li ◽  
Yu Qiang Xiong

Aluminous rocks from Xiuwen County, Guizhou are the main raw materials, mixed some kaolin mineral. Water glass and alkaline activators are used to product polymer materials, the main experimental indicators are the compressive strength. Here, the studies on amount of water glass and alkaline activator, solid-liquid ratio, amount of kaolin and effects on compressive strength of Geopolymer have been proceeded respectively. The result shows that: the highest compressive strength of geopolymers is17.94 Mpa, with aluminous rock 40g, solid-liquid ratio 2.2, water glass12g and alkali activator 2.01g, as well as kaolin 18.02g.


2021 ◽  
Author(s):  
Dasith Liyanage ◽  
Suk-Chun Moon ◽  
Ajith S. Jayasekare ◽  
Abheek Basu ◽  
Madeleine Du Toit ◽  
...  

Abstract High-temperature laser-scanning confocal microscopy (HT-LSCM) has proven to be an excellent experimental technique through in-situ observations of high temperature phase transformation to study kinetics and morphology using thin disk steel specimens. A 1.0 kW halogen lamp, within the elliptical cavity of the HT-LSCM furnace radiates heat and imposes a non-linear temperature profile across the radius of the steel sample. This local temperature profile when exposed at the solid/liquid interface determines the kinetics of solidification and phase transformation morphology. A two-dimensional numerical heat transfer model for both isothermal and transient conditions is developed for a concentrically solidifying sample. The model can accommodate solid/liquid interface velocity as an input parameter under concentric solidification with cooling rates up to 100 K/min. The model is validated against a commercial finite element analysis software package, Strand7, and optimized with experimental data obtained under near-to equilibrium conditions. The validated model can then be used to define the temperature landscape under transient heat transfer conditions.


2018 ◽  
Vol 16 (1) ◽  
pp. 738-744
Author(s):  
Nuraniye Eruygur ◽  
Nazire Gulsah Kutuk Dincel ◽  
Nursah Kutuk

AbstractTea, from the old ages to the day, is widely consumed both for enjoyment and health care due to its positive effects. The consumption of these products is increasing day by day as a result of the clear presentation of the fact that tea contains high amount of antioxidant substances (such as phenolic compounds), which is important in prevention and treatment of diseases. Tea beverage is a very important source of polyphenols. In this study, phenolic content and antioxidant capacity of different tea species were calculated by modeling with experimental design method. In the experimental part, polyphenol content was determined using the Folin-Ciocalteu method. The total amount of phenolic substance content was examined by Box-Behnken design and response surface method on black tea, green tea and white tea on different extraction temperature, extraction time and solid / liquid ratio. Solid / liquid ratio was found to be the most important parameter in terms of polyphenol content extraction from different tea samples. The highest polyphenol amount (411.762 mg gallic acid / mL) was found in green tea. To the best of our knowledge, this is the first data presenting comparatively study the effect of extraction condition on amounts of phenolic compounds from different tea samples.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zheng Lu ◽  
Bin He ◽  
Jie Chen ◽  
Li-Jun Wu ◽  
Xia-Bing Chen ◽  
...  

Fructus arctii is commonly used in Chinese medicine, and arctiin and arctigenin are its main active ingredients. Arctiin has low bioavailability in the human body and needs to be converted into arctigenin by intestinal microbes before it can be absorbed into the blood. Arctigenin has antiviral, anti-inflammatory, and anti-tumour effects and its development has important value. In this study, we used external microbial fermentation with Aspergillus awamori and Trichoderma reesei to process and convert arctiin from F. arctii powder into arctigenin, hence increasing its bioavailability. We developed a fermentation process by optimising the carbon and nitrogen source/ratio, fermentation time, pH, liquid volume, inoculation volume, and substrate solid-liquid ratio. This allowed for an arctiin conversion rate of 99.84%, and the dissolution rate of the final product was 95.74%, with a loss rate as low as 4.26%. After the fermentation of F. arctii powder, the average yield of arctigenin is 19.51 mg/g. Crude fermented F. arctii extract was purified by silica gel column chromatography, and we observed an arctigenin purity of 99.33%. Our technique effectively converts arctiin and extracts arctigenin from F. arctii and provides a solid basis for further development and industrialisation.


Author(s):  
Abel W. Ourgessa ◽  
Amen Aniley ◽  
Ababo G. Gudisa ◽  
Ibsa Neme ◽  
Alemshet Bekele

2018 ◽  
Vol 63 (1) ◽  
pp. 96-112 ◽  
Author(s):  
Barış Şimşek ◽  
İnci Sevgili ◽  
Özge Bildi Ceran ◽  
Haluk Korucu ◽  
Osman Nuri Şara

One of the ways of fully securing the presence of fresh water is water treatment process. Nanomaterials and nanotechnology offers an innovative solution for water treatment. In this study, physical, chemical and microbiological improvement rates of raw water were analyzed after filtration with graphene oxide. Graphene oxide's water treatment performance; silver nanoparticles, silver nanoparticles & graphene oxide composites that are commonly used in water treatment were compared with a traditional treatment method. When compared to the traditional method, there were improvements of 50 %, 40.7 %, 86.8 % and 45.5 % for color, TIC, TOC and hardness properties, respectively in water treatment by GO-based filtration with solid liquid ratio of 0.7 % (v/v). In water treatment with GO-Ag based filtration, 39.8 %, 69.8 %, 10.3 % and 28.6 % of improvements were obtained for TIC, TOC, hardness and LSI value compared to the conventional method. Both GO at 0.7 % (v/v) solid-liquid ratio and GO-Ag nanocomposites were successful in the number of total viable microorganisms and inhibiting microorganisms such as Escherichia coli fecal (gaita-infected), Salmonella typhi, Enterococcus faecalis, Pseudomona aeruginosa and Staphylococcus aureus. Among the studied parameters GO-Ag nanocomposites found to be the most suitable for drinking water treatment.


Sign in / Sign up

Export Citation Format

Share Document