scholarly journals Organic Phosphorus Mineralization Dominates the Release of Internal Phosphorus in a Macrophyte-Dominated Eutrophication Lake

2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Yu ◽  
Haiquan Yang ◽  
Jingan Chen ◽  
Peng Liao ◽  
Quan Chen ◽  
...  

Macrophyte-dominated eutrophication (MDE) lakes have attracted wide attention due to the high phosphorus (P) loading in sediments that poses a wide spread risk for P release and pollution management. However, because of the superior productivity characteristics, the role of organic P mineralization in sediments in the internal P loading of MDE lake is still under debate. This study investigated the release dynamic of P in the sediments of Lake Caohai, a MDE lake in southwest of China, using a combination of the modified Huffer sequential extraction method, 31P nuclear magnetic resonance spectroscopy (NMR), and composite diffusive gradient in thin films (DGT) technology. Results showed that the apparent P diffusion flux at the sediment-water interface was remarkably high, with a mean value of 0.37 mg m−2 d−1. The phosphate ester organophosphorus components (i.e., Mono-P and Diester-P) continuously deposited and degraded in the sediments maintained the high productivity of the lake, and the mineralization process plays a critical role in the release of internal P. Although the content of inorganic P in sediment is relatively high (accounting for approximately 60% of total P), the reductive mechanism based on P-containing iron oxide/hydroxide has a low contribution to the internal P loading, as was indicated by the low release rate of P-combination iron-manganese (Fe-Mn)/iron-aluminum (Fe-Al) (BD-P and NaOH-P) and the insignificant positive correlations between DGT-labile P and DGT-labile Fe in the sediment cores. Additionally, organic P in sediments could transfer to P-combination Fe-Al/Fe-Mn. However, in severely expropriated environments, the enrichment of P-combination Fe-Al/Fe-Mn in surface sediments inhibited the mineralization of monophosphate to some degree. Taken together, this study emphasized the impact of sediment organic P loading on the release of internal P in lake, highlighting that organic P is also the valuable objects for avoiding eutrophication of MDE lakes.

Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 10 ◽  
Author(s):  
Ashlea L. Doolette ◽  
Ronald J. Smernik ◽  
Timothy I. McLaren

Few studies have considered the influence of climate on organic phosphorus (P) speciation in soils. We used sodium hydroxide–ethylenediaminetetra-acetic acid (NaOH–EDTA) soil extractions and solution 31P nuclear magnetic resonance spectroscopy to investigate the soil P composition of five alpine and sub-alpine soils. The aim was to compare the P speciation of this set of soils with those of soils typically reported in the literature from other cold and wet locations, as well as those of other Australian soils from warmer and drier environments. For all alpine and sub-alpine soils, the majority of P detected was in an organic form (54–66% of total NaOH–EDTA extractable P). Phosphomonoesters comprised the largest pool of extractable organic P (83–100%) with prominent peaks assigned to myo- and scyllo-inositol hexakisphosphate (IP6), although trace amounts of the neo- and d-chiro-IP6 stereoisomers were also present. Phosphonates were identified in the soils from the coldest and wettest locations; α- and β-glycerophosphate and mononucleotides were minor components of organic P in all soils. The composition of organic P in these soils contrasts with that reported previously for Australian soils from warm, dry environments where inositol phosphate (IP6) peaks were less dominant or absent and humic-P and α- and β-glycerophosphate were proportionally larger components of organic P. Instead, the soil organic P composition exhibited similarities to soils from other cold, wet environments. This provides preliminary evidence that climate is a key driver in the variation of organic P speciation in soils.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Author(s):  
Lonnie G. Thompson ◽  
Alan L. Kolata

Climate is a fundamental and independent variable of human existence. Given that 50 percent of the Earth’s surface and much of its population exist between 30oN and 30oS, paleoenvironmental research in the Earth’s tropical regions is vital to our understanding of the world’s current and past climate change. Most of the solar energy that drives the climate system is absorbed in these regions. Paleoclimate records reveal that tropical processes, such as variations in the El Niño-Southern Oscillation (ENSO), have affected the climate over much of the planet. Climatic variations, particularly in precipitation and temperature, play a critical role in the adaptations of agrarian cultures located in zones of environmental sensitivity, such as those of the coastal deserts, highlands, and altiplano of the Andean region. Paleoclimate records from the Quelccaya ice cap (5670 masl) in highland Peru that extend back ~1800 years show good correlation between precipitation and the rise and fall of pre-Hispanic civilizations in western Peru and Bolivia. Sediment cores extracted from Lake Titicaca provide independent evidence of this correspondence with particular reference to the history of the pre-Hispanic Tiwanaku state centered in the Andean altiplano. Here we explore, in particular, the impacts of climate change on the development and ultimate dissolution of this altiplano state.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


2021 ◽  
Vol 22 (9) ◽  
pp. 4961
Author(s):  
Maria Kovalska ◽  
Eva Baranovicova ◽  
Dagmar Kalenska ◽  
Anna Tomascova ◽  
Marian Adamkov ◽  
...  

L-methionine, an essential amino acid, plays a critical role in cell physiology. High intake and/or dysregulation in methionine (Met) metabolism results in accumulation of its intermediate(s) or breakdown products in plasma, including homocysteine (Hcy). High level of Hcy in plasma, hyperhomocysteinemia (hHcy), is considered to be an independent risk factor for cerebrovascular diseases, stroke and dementias. To evoke a mild hHcy in adult male Wistar rats we used an enriched Met diet at a dose of 2 g/kg of animal weight/day in duration of 4 weeks. The study contributes to the exploration of the impact of Met enriched diet inducing mild hHcy on nervous tissue by detecting the histo-morphological, metabolomic and behavioural alterations. We found an altered plasma metabolomic profile, modified spatial and learning memory acquisition as well as remarkable histo-morphological changes such as a decrease in neurons’ vitality, alterations in the morphology of neurons in the selective vulnerable hippocampal CA 1 area of animals treated with Met enriched diet. Results of these approaches suggest that the mild hHcy alters plasma metabolome and behavioural and histo-morphological patterns in rats, likely due to the potential Met induced changes in “methylation index” of hippocampal brain area, which eventually aggravates the noxious effect of high methionine intake.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Brianne A. Bruijns ◽  
Andrew M. Johnson ◽  
Jennifer D. Irwin ◽  
Shauna M. Burke ◽  
Molly Driediger ◽  
...  

Abstract Background Early childhood educators (ECEs) play a critical role in promoting physical activity (PA) among preschoolers in childcare; thus, PA-related training for ECEs is essential. The Supporting PA in the Childcare Environment (SPACE) intervention incorporated: 1. shorter, more frequent outdoor play sessions; 2. provision of portable play equipment; and, PA training for ECEs. An extension of the SPACE intervention (the SPACE-Extension) incorporated only the shorter, more frequent outdoor play periods component of the original SPACE intervention. The purpose of this study was to explore the individual impact of these interventions on ECEs’ PA-related self-efficacy and knowledge. Methods ECEs from the SPACE (n = 83) and SPACE-Extension (n = 31) were administered surveys at all intervention time-points to assess: self-efficacy to engage preschoolers in PA (n = 6 items; scale 0 to 100); self-efficacy to implement the intervention (n = 6 items); and, knowledge of preschooler-specific PA and screen-viewing guidelines (n = 2 items). A linear mixed effects model was used to analyze the impact of each intervention on ECEs’ self-efficacy and knowledge and controlled for multiple comparison bias. Results The SPACE intervention significantly impacted ECEs’ self-efficacy to engage preschoolers in PA for 180 min/day (main effect), and when outdoor playtime was not an option (interaction effect). Further, the interaction model for ECEs’ knowledge of the total PA guideline for preschoolers approached significance when compared to the main effects model. Participants within the SPACE-Extension did not demonstrate any significant changes in self-efficacy or knowledge variables. Conclusions Findings from this study highlight the benefit of ECE training in PA with regard to fostering their PA-related self-efficacy and knowledge. Future research should explore the impact of PA training for ECEs uniquely in order to determine if this intervention component, alone, can produce meaningful changes in children’s PA behaviours at childcare.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


2021 ◽  
pp. 014556132198945
Author(s):  
Alessandra Manno ◽  
Giannicola Iannella ◽  
Vincenzo Savastano ◽  
Tommaso Vittori ◽  
Serena Bertin ◽  
...  

Introduction: To our knowledge, few papers have addressed preoperative evaluation of the impact of adenoid hypertrophy (AH) on the pathogenesis of eustachian tube dysfunction (ETD) in children with otitis media with effusion (OME). Aim: The aim of this study was 2-fold: first, to evaluate ETD using tubomanometry and Eustachian Tube Score 7 (ETS-7), in a group of children having AH; second, to assess the clinical impact of adenoidectomy on the ETD of these patients. Methods: Fifty patients, aged 4 to 15 years, underwent adenoidectomy based on various parameters: size of the adenoids causing canal obstruction (grades 1-4), the presence of OME, and recurrent episodes of rhinosinusitis. The function of the eustachian tube was evaluated using ETS-7 before and after surgical treatment. The patients were followed up for 6 months. Results: Forty children presented ETD. Of these, 36 had a grade 4 AH. The preoperative mean value for ETS-7 was 6.62. The mean postoperative ETS-7 score showed a value of 9.60 with a statistical difference compared to the preoperative value ( P = .0015). Conclusions: Adenoid hypertrophy has a high impact on the frequency of ETD. In the patients observed in the present study, the ETS-7 score appeared to be a valid tool for assessing ETD both preoperatively and postoperatively. Adenoidectomy seemed to be effective in improving ETD as well as middle ear ventilation.


Sign in / Sign up

Export Citation Format

Share Document