scholarly journals Polyethylene Glycol-Stabilized Zein Nanoparticles Containing Gallic Acid

2022 ◽  
Vol 60 (2) ◽  
Author(s):  
Heliton Augusto Wiggers ◽  
Margani Taise Fin ◽  
Najeh Maissar Khalil ◽  
Rubiana Mara Mainardes

Research background. Gallic acid is a polyphenol presenting antioxidant and antitumor activities, however its use as a nutraceutical or drug is hindered by its low bioavailability. Zein is a natural protein found in corn and has been applied as nanoparticle for drug carrier. In this study, zein nanoparticles were obtained and stabilized with polyethylene glycol (PEG) as gallic acid carriers. Experimental approach. Nanoparticles were obtained by the liquid-liquid method and characterized in terms of mean size, polydispersity index, zeta potential, morphology, solid-state interactions, and encapsulation efficiency/drug loading. The stability of nanoparticles was evaluated in simulated gastrointestinal fluids and food simulants, and the antioxidant activity was determined by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Results and conclusions. Zein nanoparticles containing gallic acid were obtained and stabilized only in the presence of PEG. The optimal conditions originated nanoparticles with mean size <200 nm, low polydispersity index (<0.25) and negative zeta potential (20 mV). The gallic acid encapsulation efficiency was about 40 %, drug loading about 5 %, and the compound was encapsulated in an amorphous state. FTIR did not identify chemical interactions after gallic acid nanoencapsulation. Zein nanoparticles were more susceptible to release the gallic acid in gastric than intestinal simulated medium, however more than 50 % of drug content was protected from premature release. In food simulants, the gallic acid release from nanoparticles was prolonged and sustained. Moreover, the nanoencapsulation did not reduce the antioxidant activity of gallic acid. Novelty and scientific contribution. The results show the importance of PEG on the formation and properties of zein nanoparticles obtained by the liquid-liquid dispersion method. This study indicates PEG-stabilized zein nanoparticles are potential carriers for gallic acid delivery by the oral route to take advantage of its antioxidant properties and be applied both in the pharmaceutical and food industry.

2010 ◽  
Vol 654-656 ◽  
pp. 2265-2268
Author(s):  
Pu Wang Li ◽  
Yi Chao Wang ◽  
Zheng Peng ◽  
Ling Xue Kong

A combined drug loaded system containing two most common anti-cancer drugs 5-fluorouracil (5-FU) and leucovorin (LV) was designed and prepared by ion crosslinking technology. The resulted nanoparticles are spherical in shape, and the particle size becomes larger when drug combination are loaded. Efficient drug encapsulation efficiency (EE) and drug loading (LC) are obtained due to the strong interaction between drugs and polymer. The combined drugs are distributed in the particles in amorpholous state which are demonstrated by the XRD results.


2021 ◽  
Vol 11 (4) ◽  
pp. 786-791
Author(s):  
Ye Liu ◽  
Guihua Xia ◽  
Shaosheng Liu ◽  
Zhenyu Song

The aim of the present study was to formulate oral chewable tablets of Montelukast (MTL) in the form of nanoparticles (NP’s). The MTL loaded NP’s were formulated by ionotropic external gelation method using tripolyphosphate (TPP) as crosslinking agent and Tween 60 as surfactant. NP’s were characterized for drug loading, encapsulation efficiency, surface morphology, saturation solubility, particle size, zeta potential and polydispersity index. The optimized NP formulation was used for development of chewable tablets using direct compression method. The prepared tablets were characterized for disintegration test, dissolution, thickness, hardness, friability and assay. The optimized formulation was evaluated in asthamatic animals to demonstrate the efficiency in asthama. The encapsulation efficiency of NP’s was found between 91.24 to 98.21% while drug loading was in the range of 10.09–14.25%. All formulations were found of nanosized in nature (110 to 200 nm) with excellent zeta potential (20.12 to 22.27 mV). PDI of all NP formulations were found within acceptable limit (less than 0.3). The nanoparticles were found spherical in shape with smooth surface. The saturation solubility of MTL was enhanced nearly 10 times (92 mg/ml) as compared to pure MTL saturation solubility. All physical parameters of the tablets were found within range. The optimized tablets showed disintegration time of 20 sec while other formulations showed DT in the rage of 35–57 sec. Tab1 (Optimized formulation) showed almost 100% MTL release from chewable tablets within the period of 30 min. Reduction in lung resistance (RI) was found in animals treated with Tab1. This reduction in RI was found nearly two fold and three fold as compare to MTL treated and control group animals. These observations clearly support the efficacy of chewable tablets containing nanoparticulate MTL in asthmatic animals.


Author(s):  
MAGFIRAH ◽  
INDAH KURNIA UTAMI

Objective: Parang romang (Boehmeria virgata) is one of the traditional medicines that are used empirically by Makassar tribal healers, South Sulawesi, as an antitumor drug. This traditional medicine contains secondary metabolites such as alkaloids, flavonoids, tannins, and saponins. However, secondary metabolites of those leaves extract have low solubility in water. Hence, to be formula, self-nanoemulsifying drug delivery system (SNEDDS) is one of the solutions to increase the extract solubility. Methods: The optimization of two formula optimum SNEDDS parang romang leaves (T80PGMZ and T20PGMZ) was using the simple lattice design (SLD) method which will give 28 SNEDDS formula parang romang leaves each of which the formula is tested for its characteristics as a critical point include emulsification time, % transmittance, drug loading, particle size, zeta potential, polydispersity index, and morphology particle. Results: The results of SNEDDS characterization obtained the optimum formula T80PGMZ with emulsification time 12.6 s, % transmittance 92.21%, drug loading 68.21 ppm, particle size 370.26 nm, zeta potential −31.4 mV, polydispersity index of 0.615, and regular particle morphology with spherical chunks at a magnification of 10,000 times with a particle size of 10 μm. Conclusion: SNEDDS of parang romang leaves extracts that used olive oil as oil phase, Tween 80 as a surfactant, and propylene glycol as the cosurfactant provided nanoemulsion with good characteristics.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1688 ◽  
Author(s):  
Vieri Piazzini ◽  
Mario D’Ambrosio ◽  
Cristina Luceri ◽  
Lorenzo Cinci ◽  
Elisa Landucci ◽  
...  

Two novel nanomicellar formulations were developed to improve the poor aqueous solubility and the oral absorption of silymarin. Polymeric nanomicelles made of Soluplus and mixed nanomicelles combining Soluplus with d-α-tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS) were prepared using the thin film method. Physicochemical parameters were investigated, in particular the average diameter, the homogeneity (expressed as polydispersity index), the zeta potential, the morphology, the encapsulation efficiency, the drug loading, the critical micellar concentration and the cloud point. The sizes of ~60 nm, the narrow size distribution (polydispersity index ≤0.1) and the encapsulation efficiency >92% indicated the high affinity between silymarin and the core of the nanomicelles. Solubility studies demonstrated that the solubility of silymarin increased by ~6-fold when loaded into nanomicelles. Furthermore, the physical and chemical parameters of SLM-loaded formulations stored at room temperature and in refrigerated conditions (4 °C) were monitored over three months. In vitro stability and release studies in media miming the physiological conditions were also performed. In addition, both formulations did not alter the antioxidant properties of silymarin as evidenced by the 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) assay. The potential of the nanomicelles to increase the intestinal absorption of silymarin was firstly investigated by the parallel artificial membrane permeability assay. Subsequently, transport studies employing Caco-2 cell line demonstrated that mixed nanomicelles statistically enhanced the permeability of silymarin compared to polymeric nanomicelles and unformulated extract. Finally, the uptake studies indicated that both nanomicellar formulations entered into Caco-2 cells via energy-dependent mechanisms.


Author(s):  
Masoud Aman Mohamadi ◽  
Parastou Farshi ◽  
Parisa Ahmadi ◽  
Azam Ahmadi ◽  
Mohammad Yousefi ◽  
...  

Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Enliang Zhao ◽  
Tonghui Yi ◽  
Juan Du ◽  
Jing Wang ◽  
Shan Cong ◽  
...  

Background. With the increasing resistance of antibiotics to bacteria, new and effective methods are needed to transform existing antibiotics to solve the problem of long development cycles for new drugs. The antibiotic nanodelivery system has proven to be a promising strategy. Aim. The purpose of this study is to synthesize penicillin solid lipid nanoparticles (penicillin SLNs) to enhance the antibacterial activity of penicillin against drug-resistant Staphylococcus aureus. Materials and Methods. Penicillin SLNs were synthesized. And particle size, the polydispersity index (PI), and zeta potential (ZP) of penicillin SLNs were measured. The surface morphology of penicillin SLNs was observed using a transmission electron microscope. Results. The particle size of penicillin SLNs is 112.3 ± 11.9   nm , the polydispersity index (PI) and zeta potential (ZP) of penicillin SLNs are 0.212 ± 0.03 and − 27.6 ± 5.5   mV . The encapsulation efficiency and drug loading were 98.31 ± 1.2 % and 4.98 ± 0.05 ( % w / w ), respectively. Penicillin SLNs had a more significant inhibitory effect on the growth of methicillin-sensitive Staphylococcus aureus (MSSA) after the drug and the bacteria were incubated for 12 hours. The number of MRSA colonies in the penicillin group increased after 12 hours, while the number of MRSA colonies in the penicillin SLNs group did not change significantly. Conclusion. Penicillin SLNs enhance the ability of penicillin to enter cells and increase the concentration of penicillin in the cell and also extend the residence time of penicillin in the cell. Our findings indicated that penicillin SLNs enhance the inhibitory effect of penicillin on drug-resistant Staphylococcus aureus.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Gholamabbas Chehardoli ◽  
Parham Norouzian ◽  
Farzin Firozian

Background. Betamethasone as a corticosteroid drug is commonly used for the treatment of rheumatoid arthritis. Unfortunately, betamethasone is a low water-soluble drug and its efficacy is low. So an attractive strategy is the targeted delivery of betamethasone to the damaged joint using polymeric micelle-based carriers. Methods. Inulin-grafted stearate (In-g-St) was synthesized via the reaction of stearoyl chloride and inulin, then characterized by FT-IR and H-NMR. In-g-St forms micelles in the presence of betamethasone. The prepared polymeric micelles were characterized for size, zeta potential, drug loading, particles’ morphology, critical micelle concentration (CMC), and encapsulation efficiency. So sustained release polymeric micelles of betamethasone were developed by employing In-g-St. Results. The measurement of particle size showed a mean diameter of 60 and 130 nm for 10% and 20% drug-loaded micelles, respectively, and SEM showed that the particle’s morphologies are spherical. Zeta potential measurement for the drug-containing micelles showed a value of -11.8 mV. Drug loading efficiency and the encapsulation efficiency were 6.36% and 63.6%, as well as 18.97% and 94.88% for 10% and 20%, respectively. 20% drug-loaded polymer showed a small burst release of betamethasone at the first 3 h which was followed by sustained release in the next 24 h. Furthermore, the formula with 10% exhibited good sustained release properties except for the minor initial burst release. Conclusion. Data from the zeta potential, CMC, drug loading capacity, and in vitro drug release studies indicated that In-g-St polymeric micelles can be suitable candidates for the efficient delivery of hydrophobic drugs like betamethasone.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jéssica A. P. Barbosa ◽  
Eryvelton S. Franco ◽  
Camilla V. N. S. Silva ◽  
Tatiane O. Bezerra ◽  
Marllon A. N. Santana ◽  
...  

Usnic acid (UA) has been studied by its pharmacological properties; however, it presents moderate toxicity, low solubility, and absorption by biological membranes. The aim of this study was to develop poly-ε-caprolactone microsphere polymers containing UA (UA-micro) and evaluate their acute toxicity and anti-inflammatory activity. The microspheres were prepared by multiple emulsion technique (water/oil/water) and characterized by the encapsulation efficiency, particle size, polydispersity index, and zeta potential. The acute toxicity of UA and UA-micro (25–50 mg/kg; p.o.) was evaluated in mice. The anti-inflammatory activity of UA and UA-micro was evaluated by subcutaneous air pouch and carrageenan-induced paw edema in rat, with measurement of inflammatory cytokines and MPO levels. The UA presented encapsulation efficiency of 97.72%, particle size of 13.54 micrometers, polydispersity index of 2.36, and zeta potential of 44.5 ± 2.95 mV. The UA-micro presented lower acute toxicity (LD50 value up to 2000 mg/kg; p.o.) when compared to UA. UA-micro and UA (25 mg/kg) significantly reduced paw volume and decreased MPO levels, whereas only UA-micro (50 mg/kg) reduced significantly IL-1β, TNF-α, and NO levels in inflammatory exudate. These results suggest that controlled release systems, as microspheres, can be a promising alternative to reduce the toxicity of UA, making it a viable compound for inflammation therapy.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3031
Author(s):  
Wan-Yi Liu ◽  
Chia-Chen Lin ◽  
Yun-Shan Hsieh ◽  
Yu-Tse Wu

This study aimed to design an effective nanoparticle-based carrier for the oral delivery of fisetin (FST) with improved biopharmaceutical properties. FST-loaded nanoparticles were prepared with polyvinyl alcohol (PVA) and poly(lactic-co-glycolic acid) (PLGA) by the interfacial deposition method. A central composite design of two independent variables, the concentration of PVA and the amount of PLGA, was applied for the optimization of the preparative parameter. The responses, including average particle size, polydispersity index, encapsulation efficiency, and zeta potential, were assessed. The optimized formulation possessed a mean particle size of 187.9 nm, the polydispersity index of 0.121, encapsulation efficiency of 79.3%, and zeta potential of −29.2 mV. The morphological observation demonstrated a globular shape for particles. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that the encapsulated FST was presented as the amorphous state. The dissolution test indicated a 3.06-fold increase for the accumulating concentrations, and the everted gut sac test showed a 4.9-fold gain for permeability at the duodenum region. In conclusion, the optimized FST-loaded nanoparticle formulation in this work can be developed as an efficient oral delivery system of FST to improve its biopharmaceutic properties.


Sign in / Sign up

Export Citation Format

Share Document