scholarly journals 3A. Estrogen receptors in GtoPdb v.2021.3

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Laurel Coons ◽  
Kenneth S. Korach

Estrogen receptor (ER) activity regulates diverse physiological processes via transcriptional modulation of target genes [1]. The selection of target genes and the magnitude of the response, be it induction or repression, are determined by many factors, including the effect of the hormone ligand and DNA binding on ER structural conformation, and the local cellular regulatory environment. The cellular environment defines the specific complement of DNA enhancer and promoter elements present and the availability of coregulators to form functional transcription complexes. Together, these determinants control the resulting biological response.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Laurel Coons ◽  
Kenneth S. Korach

Estrogen receptor (ER) activity regulates diverse physiological processes via transcriptional modulation of target genes. The selection of target genes and the magnitude of the response, be it induction or repression, are determined by many factors, including the effect of the hormone ligand and DNA binding on ER structural conformation, and the local cellular regulatory environment. The cellular environment defines the specific complement of DNA enhancer and promoter elements present and the availability of coregulators to form functional transcription complexes. Together, these determinants control the resulting biological response.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
YASIN JESHIMA KHAN ◽  
HUSNARA Tyagi ◽  
Anil kumar Singh ◽  
Santosh kumar. Magadum

Plants respond through a cascade of reactions resulting in varied cellular environment leading to alterations in the patterns of protein expression resulting in phonotypic changes. Single cell genomics and global proteomics came out to be powerful tools and efficient techniques in studying stress tolerant plants. Non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. Small ncRNAs play a vital role in post transcriptional gene regulation by either translational repression or by inducing mRNA cleavage. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs too have a similar structure, function, and biogenesis like miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences.In this review, we focus on the involvement of ncRNAs in comabting abiotic stresses of soybean. This review emphasis on previously known miRNAs as they play important role in several abiotic stresses like drought, salinity, chilling and heat stress by their diverse roles in mediating biological processes like gene expression, chromatin formation, defense of genome against invading viruses. This review attempts to elucidate the various kinds of non-coding RNAs explored, their discovery, biogenesis, functions, and response for different type of abiotic stresses and future aspects for crop improvement in the context of soybean, a representative grain legume.


2021 ◽  
Author(s):  
Chun Yang ◽  
Stéphane Croteau ◽  
Pierre Hardy

Abstract Background HDAC9 (histone deacetylase 9) belongs to the class IIa family of histone deacetylases. This enzyme can shuttle freely between the nucleus and cytoplasm and promotes tissue-specific transcriptional regulation by interacting with histone and non-histone substrates. HDAC9 plays an essential role in diverse physiological processes including cardiac muscle development, bone formation, adipocyte differentiation and innate immunity. HDAC9 inhibition or activation is therefore a promising avenue for therapeutic intervention in several diseases. HDAC9 overexpression is also common in cancer cells, where HDAC9 alters the expression and activity of numerous relevant proteins involved in carcinogenesis. Conclusions This review summarizes the most recent discoveries regarding HDAC9 as a crucial regulator of specific physiological systems and, more importantly, highlights the diverse spectrum of HDAC9-mediated posttranslational modifications and their contributions to cancer pathogenesis. HDAC9 is a potential novel therapeutic target, and the restoration of aberrant expression patterns observed among HDAC9 target genes and their related signaling pathways may provide opportunities to the design of novel anticancer therapeutic strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pengcheng Zhang ◽  
Sifan Chen ◽  
Changjia Zhu ◽  
Linxiao Hou ◽  
Weipeng Xian ◽  
...  

AbstractThermal sensation, which is the conversion of a temperature stimulus into a biological response, is the basis of the fundamental physiological processes that occur ubiquitously in all organisms from bacteria to mammals. Significant efforts have been devoted to fabricating artificial membranes that can mimic the delicate functions of nature; however, the design of a bionic thermometer remains in its infancy. Herein, we report a nanofluidic membrane based on an ionic covalent organic framework (COF) that is capable of intelligently monitoring temperature variations and expressing it in the form of continuous potential differences. The high density of the charged sites present in the sub-nanochannels renders superior permselectivity to the resulting nanofluidic system, leading to a high thermosensation sensitivity of 1.27 mV K−1, thereby outperforming any known natural system. The potential applicability of the developed system is illustrated by its excellent tolerance toward a broad range of salt concentrations, wide working temperatures, synchronous response to temperature stimulation, and long-term ultrastability. Therefore, our study pioneers a way to explore COFs for mimicking the sophisticated signaling system observed in the nature.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 623
Author(s):  
Marit Rasmussen ◽  
Susanna Tan ◽  
Venkata S. Somisetty ◽  
David Hutin ◽  
Ninni Elise Olafsen ◽  
...  

ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17β-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling. We confirmed the 17β-estradiol-dependent increases of PARP7 mRNA and protein levels in MCF-7 cells, and observed recruitment of estrogen receptor α to the promoter of PARP7. Overexpression of PARP7 decreased ligand-dependent estrogen receptor α signaling, while treatment of PARP7 knockout MCF-7 cells with 17β-estradiol resulted in increased expression of and recruitment to estrogen receptor α target genes, in addition to increased proliferation. Co-immunoprecipitation assays revealed that PARP7 mono-ADP-ribosylated estrogen receptor α, and mass spectrometry mapped the modified peptides to the receptor’s ligand-independent transactivation domain. Co-immunoprecipitation with truncated estrogen receptor α variants identified that the hinge region of the receptor is required for PARP7-dependent mono-ADP-ribosylation. These results imply that PARP7-mediated mono-ADP-ribosylation may play an important role in estrogen receptor positive breast cancer.


PPAR Research ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Li Fang ◽  
Man Zhang ◽  
Yanhui Li ◽  
Yan Liu ◽  
Qinghua Cui ◽  
...  

The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological processes such as lipid metabolism, inflammation, and wound healing. Here, we describe the first database of PPAR target genes, PPARgene. Among the 225 experimentally verified PPAR target genes, 83 are for PPARα, 83 are for PPARβ/δ, and 104 are for PPARγ. Detailed information including tissue types, species, and reference PubMed IDs was also provided. In addition, we developed a machine learning method to predict novel PPAR target genes by integratingin silicoPPAR-responsive element (PPRE) analysis with high throughput gene expression data. Fivefold cross validation showed that the performance of this prediction method was significantly improved compared to thein silicoPPRE analysis method. The prediction tool is also implemented in the PPARgene database.


2005 ◽  
Vol 25 (13) ◽  
pp. 5417-5428 ◽  
Author(s):  
Christopher C. Valley ◽  
Raphaël Métivier ◽  
Natalia M. Solodin ◽  
Amy M. Fowler ◽  
Mara T. Mashek ◽  
...  

ABSTRACT The ubiquitin-proteasome pathway has emerged as an important regulatory mechanism governing the activity of several transcription factors. While estrogen receptor α (ERα) is also subjected to rapid ubiquitin-proteasome degradation, the relationship between proteolysis and transcriptional regulation is incompletely understood. Based on studies primarily focusing on the C-terminal ligand-binding and AF-2 transactivation domains, an assembly of an active transcriptional complex has been proposed to signal ERα proteolysis that is in turn necessary for its transcriptional activity. Here, we investigated the role of other regions of ERα and identified S118 within the N-terminal AF-1 transactivation domain as an additional element for regulating estrogen-induced ubiquitination and degradation of ERα. Significantly, different S118 mutants revealed that degradation and transcriptional activity of ERα are mechanistically separable functions of ERα. We find that proteolysis of ERα correlates with the ability of ERα mutants to recruit specific ubiquitin ligases regardless of the recruitment of other transcription-related factors to endogenous model target genes. Thus, our findings indicate that the AF-1 domain performs a previously unrecognized and important role in controlling ligand-induced receptor degradation which permits the uncoupling of estrogen-regulated ERα proteolysis and transcription.


2007 ◽  
Vol 85 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hongmei Dong ◽  
Xiaohu Xu ◽  
Mohong Deng ◽  
Xiaojun Yu ◽  
Hu Zhao ◽  
...  

The aim of the study was to prepare an active recombinant human perforin by comparing 5 candidate segments of human perforin. Full-length perforin, MAC1 (28–349 aa), MAC2 (166–369 aa), C-100, and N-60 of human perforin were selected as candidate active segments and designated, respectively, HP1, HP2, HP3, HP4, and HP5. The target genes were amplified by PCR and the products were individually subcloned into pGEM-T. The genes for HP1, HP2, HP3, and HP5 were subcloned into pET-DsbA, whereas pET-41a (+) was used as the expression vector of HP4. The fusion proteins were expressed in Escherichia coli BL21pLysS(DE3) and purified using nickel nitrilotriacetic acid (NTA) agarose affinity chromatography. The hemolysis microassay was used as an activity assay of fusion protein. From this study, we obtained the recombinant plasmids pGEM-T-HP1, -HP2, -HP3, -HP4 and -HP5, consisting of 1600, 960, 600, 300bp, and 180, respectively. From these recombinant plasmids, expression plasmids were successfully constructed and expressed in E. coli BL21pLysS(DE3). The resultant fusion proteins, affinity purified using Ni–NTA, were ~80, 58, 45, 44, and 30 kDa, respectively. The recombinant proteins were assayed for activity on hemolysis. HP2 and HP5 were the only recombinant proteins that were active in hemolysis, and the hemolytic function was concentration dependent. These results demonstrate that active recombinant forms of perforin can be synthesized in a prokaryote model. The recombinant N-60 and MAC1 (28–349 aa) of human perforin have the function of forming pores. Our study provides the experimental basis for further investigation on the application of perforin.


Sign in / Sign up

Export Citation Format

Share Document