scholarly journals Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7607
Author(s):  
Peter Kis ◽  
Eva Horváthová ◽  
Eliška Gálová ◽  
Andrea Ševčovičová ◽  
Veronika Antalová ◽  
...  

Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ling-Juan Cao ◽  
Huan-De Li ◽  
Miao Yan ◽  
Zhi-Hua Li ◽  
Hui Gong ◽  
...  

Triptolide (TP), an active ingredient ofTripterygium wilfordiiHook f., possesses a wide range of biological activities. Oxidative stress likely plays a role in TP-induced hepatotoxicity. Isoliquiritigenin (ISL) and glycyrrhetinic acid (GA) are potent hepatoprotection agents. The aim of the present study was to investigate whether Nrf2 pathway is associated with the protective effects of ISL and GA against TP-induced oxidative stress or not. HepG2 cells were treated with TP (50 nM) for 24 h after pretreatment with ISL and GA (5, 10, and 20 μM) for 12 h and 24 h, respectively. The results demonstrated that TP treatment significantly increased ROS levels and decreased GSH levels. Both ISL and GA pretreatment decreased ROS and meanwhile enhanced intracellular GSH content. Additionally, TP treatment obviously decreased the protein expression of Nrf2 and its target genes including HO-1 and MRP2 except NQO1. Moreover, both ISL and GA displayed activities as inducers of Nrf2 and increased the expression of HO-1, NQO1, and MRP2. Taken together the current data confirmed that ISL and GA could activate the Nrf2 antioxidant response in HepG2 cells, increasing the expression of its target genes which may be partly associated with their protective effects in TP-induced oxidative stress.


2016 ◽  
Vol 34 (No. 4) ◽  
pp. 300-305
Author(s):  
K. Borowiec ◽  
D. Szwajgier ◽  
A. Olejnik ◽  
K. Kowalska ◽  
Z. Targoński

Bilberry is a valuable wild forest fruit harvested in many countries in Europe. The biological activities of bilberry include antioxidant, anticancer, antiviral, antibacterial, and anticholinesterase activities. This study examines the protective effects of a bilberry (BB) preparation on IEC-6, Caco-2, and HepG2 cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to study the cytotoxicity of BB. The genotoxicity was determined using single-cell microgel electrophoresis. The Ames test was employed to assay bilberry mutagenicity. No significant effects of BB (12.5–100 µg dry mass/ml) were observed on the viability of IEC-6, Caco-2, and HepG2 cells. There were no differences in the percentage of DNA in the comet tail between the cells treated with BB (100 µg dry mass/ml) and the control cells. However, a significant reduction of oxidative DNA damage in the HepG2 cells was found. BB exhibited neither mutagenic nor promutagenic effects. Our results suggest that bilberry can be a potential tool in the prevention of chronic diseases, without any undesired effects on the cells of the gastrointestinal tract.


2010 ◽  
Vol 37 (10) ◽  
pp. 1138-1143
Author(s):  
Xiao-Min LIU ◽  
Rong HU ◽  
Xiao-Qiu LIANG ◽  
Xiao-Juan WANG ◽  
Yan WU ◽  
...  

2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2020 ◽  
Vol 27 (12) ◽  
pp. 1955-1996 ◽  
Author(s):  
Antonio Speciale ◽  
Antonella Saija ◽  
Romina Bashllari ◽  
Maria Sofia Molonia ◽  
Claudia Muscarà ◽  
...  

: Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. : This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.


2021 ◽  
Author(s):  
Paulina Anita Strugała ◽  
Anna Urbaniak ◽  
Patryk Kuryś ◽  
Aleksandra Włoch ◽  
Teresa Kral ◽  
...  

The aim of study was to broadly determine the biological activities of purple potato ethanolic extract of the Blue Congo variety (BCE). The antioxidative activity of BCE was determined in...


Sign in / Sign up

Export Citation Format

Share Document