scholarly journals Harnessing molasses as a low-cost carbon source for production of poly-hydroxy butyrate (PHB) using Burkholderia sp. B73 bacteria

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Diah - RATNANINGRUM ◽  
Een Sri ENDAH ◽  
Puspita LISDIYANTI ◽  
Sri PRIATNI ◽  
Vienna SARASWATY

Burkholderia sp. has been reported as a poly-hydroxy-butyrate (PHB) producer. PHB is a natural polyester class with a wide range of applications in foods, medicines, and biomedicines. However, the high production cost of PHB may limit its potential. Molasses, a by-product of the sugarcane industry available abundantly, may be used as an alternative carbon source of PHB production. In this research, we aimed to evaluate PHB production by Burkholderia sp. B73 in fermentation media using molasses as an alternative carbon source. Small-scale experiments were performed in Erlenmeyer flasks on a shaker at 150 rpm and 30 °C to evaluate the best initial C/N ratio for biomass accumulation and PHB production. A set of parameters including bacterial growth, dry cell weight, yield, and FTIR spectrum of PHB were observed.  The results showed that molasses could be used to grow Burkholderia sp. B73 and the highest PHB production was obtained when a 20:1 C/N ratio of molasses was applied in the fermentation medium. In addition, when the initial pH was adjusted to 7.0, the highest PHB yield was also produced. More importantly, the use of molasses as a carbon source improved the PHB yield by nearly 2-fold compared with our previous report using a synthetic Ramsay’s minimal medium. In conclusion, the experiment results showed that molasses could be used as a low-cost carbon source for PHB production by Burkholderia sp. B73 bacteria.

2015 ◽  
Vol 19 (1) ◽  
pp. 56
Author(s):  
Sebastian Margino ◽  
Erni Martani ◽  
Andriessa Prameswara

Poly-β-hydroxybutyrate (PHB) production from amylolytic Micrococcus sp. PG1. Poly-β-hydroxybutyrate(PHB) is an organic polymer, which synthesized by many bacteria and serves as internal energy. PHB ispotential as future bioplastic but its price is very expensive due to glucose usage in PHB industry. Thedevelopment of PHB production using starch as an alternative carbon source has been conducted to reducethe dependence of glucose in PHB production. In this study, amylolytic bacteria from arrowroot processingsite were screened quantitavely based on amylase specifi c activity and PHB producing ability. The result of thestudy showed that among of 24 amylolytic isolates, 12 isolates of them were able to accumulate PHB rangedfrom 0,68-11,65% (g PHB/g cdw). The highest PHB production from substrate arrowroot starch was PG1 andafter optimization resulted in increasing of PHB production up to 16,8% (g PHB/g cdw) 40 hours incubationtime. Based on morphological, biochemical and physiological characters, the PG1 isolate was identifi ed asMicrococcus sp. PG1. Result of the FTIR analysis of produced polymer by Micrococcus sp. PG1 was indicatedas poly-β- hydroxybutyrate (PHB)


Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 198 ◽  
Author(s):  
Manoj K. Singh ◽  
Pradeep K. Rai ◽  
Anuradha Rai ◽  
Surendra Singh ◽  
Jay Shankar Singh

The production of poly-β-hydroxybutyrate (PHB) under varying environmental conditions (pH, temperature and carbon sources) was examined in the cyanobacterium Scytonema geitleri Bharadwaja isolated from the roof-top of a building. The S. geitleri produced PHB and the production of PHB was linear with the growth of cyanobacterium. The maximum PHB production (7.12% of dry cell weight) was recorded when the cells of S. geitleri were at their stationary growth phase. The production of PHB was optimum at pH 8.5 and 30 °C, and acetate (30 mM) was the preferred carbon source.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 616 ◽  
Author(s):  
Xi Wang ◽  
Pei Yang ◽  
Qian Feng ◽  
Taotao Meng ◽  
Jing Wei ◽  
...  

Biomass-based carbon quantum dots (CQDs) have become a significant carbon materials by their virtues of being cost-effective, easy to fabricate and low in environmental impact. However, there are few reports regarding using cyanobacteria as a carbon source for the synthesis of fluorescent CQDs. In this study, the low-cost biomass of cyanobacteria was used as the sole carbon source to synthesize water-soluble CQDs by a simple hydrothermal method. The synthesized CQDs were mono-dispersed with an average diameter of 2.48 nm and exhibited excitation-dependent emission performance with a quantum yield of 9.24%. Furthermore, the cyanobacteria-derived CQDs had almost no photobleaching under long-time UV irradiation, and exhibited high photostability in the solutions with a wide range of pH and salinity. Since no chemical reagent was involved in the synthesis of CQDs, the as-prepared CQDs were confirmed to have low cytotoxicity for PC12 cells even at a high concentration. Additionally, the CQDs could be efficiently taken up by cells to illuminate the whole cell and create a clear distinction between cytoplasm and nucleus. The combined advantages of green synthesis, cost-effectiveness and low cytotoxicity make synthesized CQDs a significant carbon source and broaden the application of cyanobacteria and provide an economical route to fabricate CQDs on a large scale.


2021 ◽  
Vol 9 (1) ◽  
pp. 7-16
Author(s):  
Leelananda Rajapaksha ◽  
DMC Champathi Gunathilake ◽  
SM Pathirana ◽  
TN Fernando

In Sri Lanka, 70% of 21 million population live in non-urban areas, and agriculture provides livelihood for approximately 40% of them. The agricultural marketing process in the country is a complex operation due to services and functions involved in moving a crop product from where it was produced to where it would finally be consumed. Further, with a wide range of agricultural crops being produced, post-harvest handling process create different degrees of quantitative and qualitative losses in a complex market chain, which are estimated at 20% to 40% for vegetables and 30% - 40% for fruits. Improper and non-scientific post-harvest practices and handling, gaps in integration of cold chain practices & elements with post-harvest process, and lack of knowledge & awareness on many related aspects at grass root farmer level etc. appear to contribute to losses that finally prevent due economic benefits reaching the small-scale producer. In order to increase the effectiveness of post-harvest process handling of fruit and vegetables, appropriate corrective measures targeting small scale producers as well as commercial scale producers need to be popularized and practiced. At small scale producer level, promotion of appropriate low-cost post-harvest practices and procedures, facilitating low-cost cold chain elements and user-friendly information flow mechanism on market situation would certainly help avoid some of the steps that lead to losses. Monitoring system of commercial post-harvest handling process that ensure scientific bulk handling, storage and transportation of fruit and vegetables, properly designed economic centers with well regulated environmentcontrolled storages etc. would greatly reduce loses in bulk handling, ensuring better food security in the island.


2021 ◽  
Vol 263 (2) ◽  
pp. 4418-4425
Author(s):  
Han Wu ◽  
Peng Zhou ◽  
Siyang Zhong ◽  
Xin Zhang ◽  
Kunyu Luo

Multi-copters or drones are engaged in a wide range of industrial applications for their flexibility, safety and low-cost. The noise emission is becoming an issue with the expanding applications, among which the propellers that drive the drones are the major sources of noise. In this work, the noise characteristics of small-scale propellers is experimentally investigated using the advanced rotor aerodynamics and aeroacoustics test platform in an anechoic chamber at the Hong Kong University of Science and Technology (HKUST). The study will focus on the representative off-the-shelf propellers. The rotor noise will be measured by a linear array with 20 microphones, and the aerodynamic forces will be acquired by using the high-accuracy load cells. The dependence of both the tonal and broadband noise radiation with the thrust and rotation speed at various conditions will be tested. The study will enhance our understanding of the noise features of the multi-rotor powered drones, and will provide us with a better understanding of the status of the drone noise impact on the environment.


2019 ◽  
Vol 6 (sp1) ◽  
pp. 541-550 ◽  
Author(s):  
Varsha Upadhayay ◽  
Samakshi Verma ◽  
Arindam Kuila

Polyhydroxybutyrate (PHB) is one of the highly biodegradable and biologically acceptable thermoplastics synthesized by many microorganisms collectively called polyhydroxyalkanoates (PHAs). All available biopolymers are viewed as perfect answers for the resolution of natural contamination issue by supplanting ordinary plastic business. They are likewise utilized as osteosclerotic stimulants attributable to their piezoelectric properties, in bone plates, during operations as suture material and vein substitutions. Synthesis of PHB is found in a wide range of Gram’s negative and gram’s positive bacteria belonging to distinct genera. Optimum culture condition for the PHB producing microbes are provided, including restricted centralization of nitrogen, sulfur, phosphorus, or the trace elements and maximum convergence of carbon source Indeed, to market PHAs, significant exertion has been dedicated towards a decline in the production cost through the improvement of bacterial strains and enhancing effectiveness of recovery/fermentation procedure. This is being done considering the fact that substrate prices show the greatest impact on PHA's manufacturing cost. The price of the substrate used has the most significant influence on the production cost of PHA. In this research, a potential bacterial strain was isolated from the soil and tested for its PHB producing ability. The use of cheaper substrate for lowering the cost is prerequisite. For PHB production, water hyacinth was used as a carbon source. Bacterial growth was optimized for maximum PHB production. The optimum condition was found to be 30 °C, 8% substrate concentration and 72 h of incubation time.


2019 ◽  
Author(s):  
Swetha Narayankumar ◽  
Neethu K. Shaji ◽  
Veena gayathri Krishnaswamy

ABSTRACTPoly(hydroxybutyric acid) (PHB) and other biodegradable polyesters are promising candidates for the development of environment-friendly and completely biodegradable plastics. One of the major drawbacks in the production of PHB is production costs, since it requires large amount of carbon source. This calls for cheaper substrates that can be used as an alternative carbon source such as agro-industrial residues. In this study, cane molasses was used as an additional carbon source at 2% concentration along with glucose for large scale production of PHB. Ammonium nitrate was used as the nitrogen source and the C:N ratio was maintained at 1:15. The maximum production of PHB was obtained at 24hours of growth which was found to be 0.5g/L and had a dry cell weight of 3.7g/ L.The PHB produced was further analysed by GC-MS Analysis and Transmission Electron Microscopy (TEM).The obtained PHB from scale-up studies were further electrospinned using different blends of polymers.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1687
Author(s):  
Håkon Eidsvåg ◽  
Said Bentouba ◽  
Ponniah Vajeeston ◽  
Shivatharsiny Yohi ◽  
Dhayalan Velauthapillai

Hydrogen produced from water using photocatalysts driven by sunlight is a sustainable way to overcome the intermittency issues of solar power and provide a green alternative to fossil fuels. TiO2 has been used as a photocatalyst since the 1970s due to its low cost, earth abundance, and stability. There has been a wide range of research activities in order to enhance the use of TiO2 as a photocatalyst using dopants, modifying the surface, or depositing noble metals. However, the issues such as wide bandgap, high electron-hole recombination time, and a large overpotential for the hydrogen evolution reaction (HER) persist as a challenge. Here, we review state-of-the-art experimental and theoretical research on TiO2 based photocatalysts and identify challenges that have to be focused on to drive the field further. We conclude with a discussion of four challenges for TiO2 photocatalysts—non-standardized presentation of results, bandgap in the ultraviolet (UV) region, lack of collaboration between experimental and theoretical work, and lack of large/small scale production facilities. We also highlight the importance of combining computational modeling with experimental work to make further advances in this exciting field.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Sign in / Sign up

Export Citation Format

Share Document