scholarly journals Mechanical and Thermal Properties of Epoxy Polymer Composites Reinforced with CuO

YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 272-280
Author(s):  
Mahadeva Raju G. K ◽  
◽  
G. M Madhu ◽  
P Dinesh Sankar Reddy ◽  
Karthik K V ◽  
...  

Polymer nano composites using CuO as filler material and epoxy as matrix materials were prepared with different concentrations of CuO nano particles (1-5 wt%) by shear mixing followed by ultra-sonication process. The mechanical properties such as compressive strength and modulus were characterized using ASTM standards. It was found that the addition of CuO nano particles both compressive strength and modulus increased. As the CuO content increased in epoxy matrix the moduli values found to increase and were further analyzed using micromechanical models. The analytical models discussed correlate well with experimental values. The models discussed include Nicolais – Narkis, Turcsanyi, Piggot – Leidner and Nielsen models for the tensile strength values and for tensile modulus the models discussed include Halpin Tsai, Kerner and Sato – Furukawa models. These micromechanics models predict stiffness of nanocomposites with both aligned and randomly oriented fillers. XRD pattern revealed the interaction between CuO nanoparticles and epoxy matrix. The thermal decomposition behaviour revealed that there is an enhancement of onset of decomposition temperature by 28oC for 5wt% CuO filled epoxy than that of pure epoxy

2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Norkhairunnisa Mazlan ◽  
Teong Chee Khoon

Compressive strength of the epoxy matrix loaded by combination of hybrid filler is expected to benefit by the hollow nature of microsphere and highly porous silica aerogel and, consequently it also depends on the suitable ratio of microsphere:silica aerogel (Mic:SilAe). In this study, the morphology of the fillers was investigated by Scanning Electron Microscope (SEM) for microstructure analysis. The nanocomposite was then prepared by shear mixing technique. Compressive yield and fracture strength behavior were assessed as a function of Mic:SilAe ratios and its dispersion in epoxy matrix. The compressive yield and fracture strength increased monotonously with inclusion of considerable ratio of Mic:SilAe. The optimum loading of Mic:SilAe in epoxy nanocomposite was attained at filler ratio of 1:1 for compressive yield strength and filler ratio of 5:1 for compressive fracture strength, where the improvement were 28% and 90%, respectively 


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 700
Author(s):  
Muhamad Hasfanizam Mat Yazik ◽  
Mohamed Thariq Hameed Sultan ◽  
Mohammad Jawaid ◽  
Abd Rahim Abu Talib ◽  
Norkhairunnisa Mazlan ◽  
...  

The aim of the present study has been to evaluate the effect of hybridization of montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNT) on the thermal and viscoelastic properties of shape memory epoxy polymer (SMEP) nanocomposites. In this study, ultra-sonication was utilized to disperse 1%, 3%, and 5% MMT in combination with 0.5%, 1%, and 1.5% MWCNT into the epoxy system. The fabricated SMEP hybrid nanocomposites were characterized via differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The storage modulus (E’), loss modulus (E”), tan δ, decomposition temperature, and decomposition rate, varied upon the addition of the fillers. Tan δ indicated a reduction of glass transition temperature (Tg) for all the hybrid SMEP nanocomposites. 3% MMT/1% MWCNT displayed best overall performance compared to other hybrid filler concentrations and indicated a better mechanical property compared to neat SMEP. These findings open a way to develop novel high-performance composites for various potential applications, such as morphing structures and actuators, as well as biomedical devices.


Author(s):  
Iurii Burda ◽  
Michel Barbezat ◽  
Andreas J Brunner

Glass-fiber reinforced polymer (GFRP) composite rods with epoxy matrix filled with electrically nonconducting particles find widespread use in high-voltage electrical insulator applications. The service loads require a range of different, minimum material property values, e.g. toughness, tensile, or compressive strength, but also component-specific performance, e.g. pull-out friction of surface crimped metal fittings or electric breakdown strength. The contribution discusses selected examples of the effects of different particle filler types on the properties of filled epoxy resin as well as on the behavior of GFRP rods with such a matrix. In all investigated systems CaCO3 was used as micron-sized filler, complemented by different amounts of either nanosilica or core-shell rubber (binary filler), or by both, nanosilica and core-shell rubber (ternary filler). With ternary filler combinations at a content of 36 wt%, fracture toughness GIC was improved in nanocomposite epoxy plates and in GFRP rods by 60% and 100%, respectively compared to a matrix with 20 wt% CaCO3 (used as reference system). The glass transition temperature Tg for some ternary systems dropped from 160 °C (for neat epoxy), to approximately 140 °C, the maximum allowed drop in Tg in view of requirements from further processing steps of the electrically insulating components. The ternary fillers yield transfer of the improvements of fracture properties from epoxy nanocomposite plates into the GFRP rods beyond that of the system with CaCO3 filler only. Compressive strength of the GFRP rods was improved by about 20% only for the binary nanosilica and CaCO3 filler, and was not significantly enhanced with the ternary systems. That combination, however, did not yield improvements in toughness beyond the CaCO3-filled nanocomposite plates and rods. With the range of filler types and contents investigated here, it was hence not possible to simultaneously optimize both, fracture toughness and compressive strength of the GFRP insulator rods.


2021 ◽  
Vol 1160 ◽  
pp. 25-43
Author(s):  
Naglaa Glal-Eldin Fahmy ◽  
Rasha El-Mashery ◽  
Rabiee Ali Sadeek ◽  
L.M. Abd El-Hafaz

High strength concrete (HSC) characterized by high compressive strength but lower ductility compared to normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. Nanomaterials have gained increased attention because of their improvement of mechanical properties of concrete. In this paper we present an experimental study of the flexural behavior of reinforced beams composed of high-strength concrete and nanomaterials. Eight simply supported rectangular beams were fabricated with identical geometries and reinforcements, and then tested under two third-point loads. The study investigated the concrete compressive strength (50 and 75 N/mm2) as a function of the type of nanomaterial (nanosilica, nanotitanium and nanosilica/nanotitanium hybrid) and the nanomaterial concentration (0%, 0.5% and 1.0%). The experimental results showed that nano particles can be very effective in improving compressive and tensile strength of HSC, nanotitanium is more effective than nanosilica in compressive strength. Also, binary usage of hybrid mixture (nanosilica + nanotitanium) had a remarkable improvement appearing in compressive and tensile strength than using the same percentage of single type of nanomaterials used separately. The reduction in flexural ductility due to the use of higher strength concrete can be compensated by adding nanomaterials. The percentage of concentration, concrete grade and the type of nanomaterials, could predominantly affect the flexural behavior of HSRC beams.


2021 ◽  
Author(s):  
IVAN GALLEGOS ◽  
JOSHUA KEMPPAINEN ◽  
SAGAR U. PATIL ◽  
PRATHAMESH DESHPANDE ◽  
JACOB GISSINER ◽  
...  

Carbon-carbon composites (CCCs) widely used in the aerospace and automotive industries due to their excellent mechanical and thermal properties. Phenolic resins have a relatively high carbon yield, which makes them a suitable candidate for CCCs manufacturing. Molecular Dynamics (MD) can further reduce costs by predicting properties of a material before manufacturing and testing. In the present work, a Molecular Dynamics (MD) model of a crosslinked phenolic resin was developed to predict mechanical properties by implementing the fix bond/react algorithm in LAMMPS. The predicted mass density (ρ) and Young’s Modulus (E) agree well with experimental values and highlights the validity of the topologybased approach to building stable molecular models of phenolic resins.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2517 ◽  
Author(s):  
Christian Leopold ◽  
Sergej Harder ◽  
Timo Philipkowski ◽  
Wilfried Liebig ◽  
Bodo Fiedler

Common analytical models to predict the unidirectional compressive strength of fibre reinforced polymers are analysed in terms of their accuracy. Several tests were performed to determine parameters for the models and the compressive strength of carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP). The analytical models are validated for composites with glass and carbon fibres by using the same epoxy matrix system in order to examine whether different fibre types are taken into account. The variation in fibre diameter is smaller for CFRP. The experimental results show that CFRP has about 50% higher compressive strength than GFRP. The models exhibit significantly different results. In general, the analytical models are more precise for CFRP. Only one fibre kinking model’s prediction is in good agreement with the experimental results. This is in contrast to previous findings, where a combined modes model achieves the best prediction accuracy. However, in the original form, the combined modes model is not able to predict the compressive strength for GFRP and was adapted to address this issue. The fibre volume fraction is found to determine the dominating failure mechanisms under compression and thus has a high influence on the prediction accuracy of the various models.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Kazi Md Zakir Hossain ◽  
Nashid Sharif ◽  
N. C. Dafader ◽  
M. E. Haque ◽  
A. M. Sarwaruddin Chowdhury

A range of radiation vulcanised natural rubber latex (RVNRL) films were prepared using various concentrations of aqueous extracts of mature Diospyros peregrina fruit, which acted as a cross-linking agent. The surface of the RVNRL films exhibited an aggregated morphology of the rubber hydrocarbon with increasing roughness due to increasing fruit extract contents in the latex. An improvement in tensile strength, tensile modulus, and storage modulus of RVNRL films was observed with the addition of fruit extracts compared to the control film due to their cross-linking effect. The glass transition (Tg) temperature of all the RVNRL films was found to be at around −61.5°C. The films were also observed to be thermally stable up to 325°C, while the maximum decomposition temperature appeared at around 375°C. The incorporation of fruit extracts further revealed a significant influence on increasing the crystallinity, gel content, and physical cross-link density of the RVNRL films.


e-Polymers ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. 177-185
Author(s):  
Ayesha Kausar

AbstractIn this study, thermally and mechanically stable poly(methyl methacrylate) (PMMA)-based nanocomposites were produced through the reinforcement of electrospun aramid-silica-grafted multi-walled carbon nanotube-based nanofibers (MWCNT-Ar-Si). The multi-walled carbon nanotube was initially modified to prepare an isocyanatopropyltriethoxysilane-grafted MWCNT via the sol-gel route using 3-isocyanatopropyl-triethoxysilane and tetraethoxysilane (TEOS). The silica network was developed and linked to MWCNT by hydrolysis and condensation of TEOS. The said isocyanatopropyltriethoxysilane-grafted MWCNT was electrospun with the aramid solution. The electrospun MWCNT-Ar-Si nanofibers (0.1–1 wt.%) were then reinforced in a PMMA matrix. For comparative analysis, PMMA was also reinforced with 0.1–1 wt.% of aramid nanofibers. The tensile modulus of PMMA/MWCNT-Ar-Si 0.1 was 5.11 GPa, which was increased to 13.1 GPa in PMMA/MWCNT-Ar-Si 1. The 10% decomposition temperature of PMMA/MWCNT-Ar-Si 0.1–1 hybrids was in the range of 479–531°C. The glass transition temperature, determined from the maxima of tan δ data using dynamic mechanical thermal analysis, showed an increase with the filler loading and was maximum (301°C) for PMMA/MWCNT-Ar-Si 1 with 1 wt.% of MWCNT-Ar-Si nanofibers. In contrast, PMMA/Ar 0.1–1 hybrids showed lower values in the thermal and the mechanical profile depicting the combined effect of nanotube and aramid in electrospun nanofibers.


2014 ◽  
Vol 513-517 ◽  
pp. 161-164
Author(s):  
Xing Kai Chen

In the present investigation, carbon nanofibers (CNF) were dispersed in epoxy matrix to form CNF/glass fiber/epoxy composites. Before blending, CNF was oxidated to get more functional groups on CNF and improve the interface combination between resin and CNF, the infrared spectrum was used to test the efficiency. After that, tensile modulus tests were carried on for CNF/glass fiber/epoxy composites with different CNF fractions, the results indicated that there were slight improvements of tensile modulus when adding CNF. At 3.0 wt% of CNF, composites have the high improvement of tensile modulus, but the reinforcement of CNF decreased at 5.0 wt% of CNF. And the CNF reinforcement efficiency was analyzed using modified Coxs model and rule of mixture.


2015 ◽  
Vol 05 (01) ◽  
pp. 131-138 ◽  
Author(s):  
Mohamed A. Ahmed ◽  
Yehia A. Hassanean ◽  
Kamal A. Assaf ◽  
Moustafa A. Shawkey

Sign in / Sign up

Export Citation Format

Share Document