scholarly journals Effect of Engineered Biomaterials and Magnetite on Wastewater Treatment: Biogas and Kinetic Evaluation

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4323
Author(s):  
Gloria Amo-Duodu ◽  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal ◽  
Edward Kwaku Armah ◽  
Jeremiah Adedeji ◽  
...  

In this study, the principle of sustaining circular economy is presented as a way of recovering valuable resources from wastewater and utilizing its energy potential via anaerobic digestion (AD) of municipality wastewater. Biostimulation of the AD process was investigated to improve its treatability efficiency, biogas production, and kinetic stability. Addressing this together with agricultural waste such as eggshells (CE), banana peel (PB), and calcined banana peels (BI) were employed and compared to magnetite (Fe3O4) as biostimulation additives via 1 L biochemical methane potential tests. With a working volume of 0.8 L (charge with inoculum to substrate ratio of 3:5 v/v) and 1.5 g of the additives, each bioreactor was operated at a mesophilic temperature of 40 °C for 30 days while being compared to a control bioreactor. Scanning electron microscopy and energy dispersive X-ray (SEM/EDX) analysis was used to reveal the absorbent’s morphology at high magnification of 10 kx and surface pore size of 20.8 µm. The results showed over 70% biodegradation efficiency in removing the organic contaminants (chemical oxygen demand, color, and turbidity) as well as enhancing the biogas production. Among the setups, the bioreactor with Fe3O4 additives was found to be the most efficient, with an average daily biogas production of 40 mL/day and a cumulative yield of 1117 mL/day. The kinetic dynamics were evaluated with the cumulative biogas produced by each bioreactor via the first order modified Gompertz and Chen and Hashimoto kinetic models. The modified Gompertz model was found to be the most reliable, with good predictability.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4664
Author(s):  
Siswo Sumardiono ◽  
Bakti Jos ◽  
Agata Advensia Eksa Dewanti ◽  
Isa Mahendra ◽  
Heri Cahyono

Agricultural waste, particularly lignocellulose, has been used in the second generation of biogas. Coffee pulp and chicken feathers can be developed as biogas raw materials because of their suitability as a biogas substrate. This study investigates the effect of the percentage of total solids (TS), carbon to nitrogen ratio (C/N, g/g), and delignification pretreatment on biogas production from coffee pulp and chicken feathers, and aims to compose kinetics using the modified Gompertz model. The results show that adjusting the percentage of TS at low-level speeds up the degradation process, which increases chemical oxygen demand (COD) reduction and biogas production. COD reduction and biogas production increase optimally at the 25 (g/g) C/N ratio. Pretreatment delignification aids microorganisms in substrate decomposition, resulting in faster COD reduction and biogas conversion. The 25% TS and 25 (g/g) C/N ratio with the delignification process achieved the best biogas production, with biogas production of 10,438.04 mL. The Gompertz method shows that the difference in TS percentage can influence biogas production. Moreover, the method shows that biogas production is higher with the delignification process than without it.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2016 ◽  
Vol 37 (4) ◽  
pp. 1827 ◽  
Author(s):  
Paulo André Cremonez ◽  
Armin Feiden ◽  
Joel Gustavo Teleken ◽  
Samuel Nelson Melegari de Souza ◽  
Michael Feroldi ◽  
...  

In this study, we compared cassava starch-based biodegradable polymers (PBMs) and glycerol (G) as additives used to increase biogas production from the co-digestion of swine wastewater (ARS). We chose to work with an inoculum comprising 40% (v/v) of the total volume of the reactor; this inoculum was obtained from a Canadian model digester for treating swine waste. In the anaerobic digestion process, batch reactors were used on a laboratory scale with a total volume of approximately 4 L and a working volume of 3.2 L. Three treatments were conducted to compare the efficiency of solid removal, the chemical oxygen demand (COD), and the production of biogas. The first treatment contained only swine waste; the second included the addition of glycerol at 1, 3, and 5% (w/v); and the third treatment included the addition of 1, 3, and 5% (w/v) of PBM residue in relation to the swine wastewater. From the results, it can be concluded that higher yields were obtained for the treatment with 3% PBM and 1% glycerol. Most treatments showed high removal rates of total solids and total volatile solids. Reductions lower than 70% were obtained only for treatments with PBM and glycerol at a ratio of 5%.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1094
Author(s):  
Marco Chiappero ◽  
Francesca Cillerai ◽  
Franco Berruti ◽  
Ondřej Mašek ◽  
Silvia Fiore

Biochar (BC) recently gained attention as an additive for anaerobic digestion (AD). This work aims at a critical analysis of the effect of six BCs, with different physical and chemical properties, on the AD of mixed wastewater sludge at 37 °C, comparing their influence on methane production and AD kinetics. AD batch tests were performed at the laboratory scale operating 48 reactors (0.25 L working volume) for 28 days with the addition of 10 g L−1 of BC. Most reactors supplemented with BCs exhibited higher (up to 22%) methane yields than the control reactors (0.15 Nm3 kgVS−1). The modified Gompertz model provided maximum methane production rate values, and in all reactors the lag-phase was equal to zero days, indicating a good adaptation of the inoculum to the substrate. The potential correlations between BCs’ properties and AD performance were assessed using principal component analysis (PCA). The PCA results showed a reasonable correlation between methane production and the BCs’ O–C and H–C molar ratios, and volatile matter, and between biogas production and BCs’ pore volume, specific surface area, and fixed and total carbon. In conclusion, the physic-chemical properties of BC (specifically, hydrophobicity and morphology) showed a key role in improving the AD of mixed wastewater sludge.


2004 ◽  
Vol 50 (9) ◽  
pp. 17-23 ◽  
Author(s):  
B. Park ◽  
J.-H. Ahn ◽  
J. Kim ◽  
S. Hwang

This work elucidates the effects of pretreatment of secondary sludge by microwave irradiation on anaerobic digestion. The soluble chemical oxygen demand (COD) concentration increased up to 22% as microwave irradiation time increased, which indicated the sludge particles disintegrated. Three identical automated bioreactors with working volume of 5 l were used as anaerobic digesters at mesophilic temperature (35°C). The reactors were separately fed with sludge with microwave pretreated- and controlsludge at different hydraulic retention times (HRT). The volatile solid (VS) reduction in the control operation was approximately 23.2 ± 1.3%, while it was 25.7 ± 0.8% for the reactors with the pretreated sludge. The average biogas production rate with the pretreated sludge at 8, 10, 12, and 15 days HRTs was 240 ± 11, 183 ± 9, 147 ± 8, and 117 ± 7 ml/l/d respectively, while those with the control sludge were134 ± 12 and 94 ± 7 ml/l/d at 10 and 15 days HRTs. Maximum rates of COD removal and methane production with the pretreated sludge were 64% and 79% higher than those of the control system, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6434
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Gloria Amo-Duodu ◽  
Sudesh Rathilal

Digestate is characterized by high water content, and in the water and wastewater treatment settings, necessitates both large storage capacities and a high cost of disposal. By seeding digestate with four magnetic nanoparticles (MNPs), this study aimed to recover biogas and boost its methane potential anaerobically. This was carried out via biochemical methane potential (BMP) tests with five 1 L bioreactors, with a working volume of 80% and 20% head space. These were operated under anaerobic conditions at a temperature 40 °C for a 30 d incubation period. The SEM/EDX results revealed that the morphological surface area of the digestate with the MNPs increased as compared to its raw state. Comparatively, the degree of degradation of the bioreactors with MNPs resulted in over 75% decontamination (COD, color, and turbidity) as compared to the control system result of 60% without MNPs. The highest biogas production (400 mL/day) and methane yield (100% CH4) was attained with 2 g of Fe2O4-TiO2 MNPs as compared to the control biogas production (350 mL/day) and methane yield (65% CH4). Economically, the highest energy balance achieved was estimated as 320.49 ZAR/kWh, or 22.89 USD/kWh in annual energy savings for this same system. These findings demonstrate that digestate seeded with MNPs has great potential to improve decontamination efficiency, biogas production and circular economy in wastewater management.


2013 ◽  
Vol 69 (3) ◽  
pp. 560-565 ◽  
Author(s):  
Bjarne Paulsrud ◽  
Bjørn Rusten ◽  
Bjørn Aas

The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment.


2013 ◽  
Vol 856 ◽  
pp. 327-332 ◽  
Author(s):  
Apiwaj Janejadkarn ◽  
Orathai Chavalparit

The objective of this research was to evaluate the quantity of biogas production from napier grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum) in three identical continuously stirred tank reactor (CSTRs) at room temperature. The volatile solids feed was varied at 1.5, 2 and 3%, respectively. The organic loading rate was altered at 0.43, 0.57 and 0.86 kg VS/m3.d in CSTR 1, 2 and 3, respectively. Three laboratory scale CSTRs with working volume of 5 l were carried out. The results showed that the optimum volatile solids fraction was 2% VS with maximum biogas production of 0.529 m3/kg VS added. The methane production was achieved at 0.242 m3/kg VS added. Under this condition, the soluble chemical oxygen demand (SCOD) of the hydrolysate was increased by 74% and the SCOD and VS removal efficiency were obtained 52.52% and 55.98%, respectively. The highest total volatile fatty acid was obtained on day 12, which was 5.51 g/l and the highest concentration of HAc was 4.33 g/l. The results indicated that volatile solids fraction was 2% VS achieves a maximum biogas yield and can be successfully converted using anaerobic digestion and was investigated into economical and scalable.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1200
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents magnetized nanoparticles (NPs) as a catalyst to accelerate anaerobic digestion (AD) potential for clean and ecofriendly energy (biogas) from wastewater settings. The effects of iron oxides (Ms) and aluminum sulphate (Alum) were investigated using two chronological experiments: (i) the Jar test technique to generate residue slurry as organic fertilizer potential and (ii) a magnetized biochemical methane potential (MBMP) system for biogas production at mesophilic conditions for 21 days. X-ray diffraction and Fourier Transform Infrared spectroscopy were carried out to establish the Ms Crystallite and active functional groups respectively. Scanning electronic microscopy coupled with energy dispersive X-ray spectrometer and elemental analysis were used to track and confirm NPs inclusion after the post-AD process. Coagulation at 50 mg/L and magnetic exposure time of 30 min showed above 85% treatability performance by Ms as compared to 70% for Alum. Owing to the slow kinetics of the AD process, additional NPs content in the digesters coupled with an external magnetic field improved their performance. Cumulative biogas yields of 1460 mL/d > 610 mL/d > 505 mL/d for Ms > Control > Alum respectively representing 80% > 61% > 52% of CH4 were attained. The modified Gompertz model shows that the presence of NPs shortens the lag phase of the control system with kinetics rate constants of 0.285 1/d (control) to 0.127 1/d (Ms) < 0.195 1/d (Alum).


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2473 ◽  
Author(s):  
Muhammad Arif Fikri Hamzah ◽  
Jamaliah Md Jahim ◽  
Peer Mohamed Abdul ◽  
Ahmad Jaril Asis

Malaysia is one of the largest palm oil producers worldwide and its most abundant waste, palm oil mill effluent (POME), can be used as a feedstock to produce methane. Anaerobic digestion is ideal for treating POME in methane production due to its tolerance to high-strength chemical oxygen demand (COD). In this work, we compared the culture conditions during the start-up of anaerobic digestion of acidified POME between thermophilic (55 °C) and mesophilic (37 °C) temperatures. The pH of the digester was maintained throughout the experiment at 7.30 ± 0.2 in a working volume of 1000 mL. This study revealed that the thermophilic temperature stabilized faster on the 44th day compared to the 52nd day for the mesophilic temperature. Furthermore, the thermophilic temperature indicated higher biogas production at 0.60 L- CH 4 /L·d compared to the mesophilic temperature at 0.26 L- CH 4 /L·d. Results from this study were consistent with the COD removal of thermophilic temperature which was also higher than the mesophilic temperature.


Sign in / Sign up

Export Citation Format

Share Document