scholarly journals Fire Behavior of Wood-Based Composite Materials

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4352
Author(s):  
Juliana Sally Renner ◽  
Rhoda Afriyie Mensah ◽  
Lin Jiang ◽  
Qiang Xu ◽  
Oisik Das ◽  
...  

Wood-based composites such as wood plastic composites (WPC) are emerging as a sustainable and excellent performance materials consisting of wood reinforced with polymer matrix with a variety of applications in construction industries. In this context, wood-based composite materials used in construction industries have witnessed a vigorous growth, leading to a great production activity. However, the main setbacks are their high flammability during fires. To address this issue, flame retardants are utilized to improve the performance of fire properties as well as the flame retardancy of WPC material. In this review, flame retardants employed during manufacturing process with their mechanical properties designed to achieve an enhanced flame retardancy were examined. The addition of flame retardants and manufacturing techniques applied were found to be an optimum condition to improve fire resistance and mechanical properties. The review focuses on the manufacturing techniques, applications, mechanical properties and flammability studies of wood fiber/flour polymer/plastics composites materials. Various flame retardant of WPCs and summary of future prospects were also highlighted.

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1146 ◽  
Author(s):  
Aurélie Cayla ◽  
François Rault ◽  
Stéphane Giraud ◽  
Fabien Salaün ◽  
Rodolphe Sonnier ◽  
...  

Flame retardancy of polymers is a recurring obligation for many applications. The development trend of biobased materials is no exception to this rule, and solutions of flame retardants from agro-resources give an advantage. Lignin is produced as a waste by-product from some industries, and can be used in the intumescent formation development as a source of carbon combined with an acid source. In this study, the flame retardancy of polyamide 11 (PA) is carried out by extrusion with a kraft lignin (KL) and ammonium polyphosphate (AP). The study of the optimal ratio between the KL and the AP makes it possible to optimize the fire properties as well as to reduce the cost and facilitates the implementation of the blend by a melting process. The properties of thermal decomposition and the fire reaction have been studied by thermogravimetric analyzes, pyrolysis combustion flow calorimetry (PCFC) and vertical flame spread tests (UL94). KL permits a charring effect delaying thermal degradation and decreases by 66% the peak of heat release rate in comparison with raw PA. The fire reaction of the ternary blends is improved even if KL-AP association does not have a synergy effect. The 25/75 and 33/67 KL/AP ratios in PA give an intumescence behavior under flame exposure.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2648 ◽  
Author(s):  
Kuruma Malkappa ◽  
Jayita Bandyopadhyay ◽  
Suprakas Ray

Polylactide (PLA) is one of the most widely used organic bio-degradable polymers. However, it has poor flame retardancy characteristics. To address this disadvantage, we performed melt-blending of PLA with intumescent flame retardants (IFRs; melamine phosphate and pentaerythritol) in the presence of organically modified montmorillonite (OMMT), which resulted in nanobiocomposites with excellent intumescent char formation and improved flame retardant characteristics. Triphenyl benzyl phosphonium (OMMT-1)- and tributyl hexadecyl phosphonium (OMMT-2)-modified MMTs were used in this study. Thermogravimetric analysis in combination with Fourier transform infrared spectroscopy showed that these nanocomposites release a smaller amount of toxic gases during thermal degradation than unmodified PLA. Melt-rheological behaviors supported the conclusions drawn from the cone calorimeter data and char structure of the various nanobiocomposites. Moreover, the characteristic of the surfactant used for the modification of MMT played a crucial role in controlling the fire properties of the composites. For example, the nanocomposite containing 5 wt.% OMMT-1 showed significantly improved fire properties with a 47% and 68% decrease in peak heat and total heat release rates, respectively, as compared with those of unmodified PLA. In summary, melt-blending of PLA, IFR, and OMMT has potential in the development of high-performance PLA-based sustainable materials.


RSC Advances ◽  
2021 ◽  
Vol 11 (49) ◽  
pp. 30943-30954
Author(s):  
Wei Peng ◽  
Yu-xuan Xu ◽  
Shi-bin Nie ◽  
Wei Yang

Phosphorus-containing flame retardants have received huge interest for improving the flame retardant behavior of epoxy resins (EP) over the past few decades.


2019 ◽  
Vol 290 ◽  
pp. 08010
Author(s):  
Karolina Karolewska ◽  
Bogdan Ligaj

The most commonly used technology among the additive manufacturing is Direct Metal Laser Sintering (DMLS). This process is based on selective laser sintering (SLS). The method gained its popularity due to the possibility of producing metal parts of any geometry, which would be difficult or impossible to obtain by the use of conventional manufacturing techniques. Materials used in the elements manufacturing process are: titanium alloys (e.g. Ti6Al4V), aluminium alloy AlSi10Mg, etc. Elements printed from Ti6Al4V titanium alloy find their application in many industries. Details produced by additive technology are often used in medicine as skeletal, and dental implants. Another example of the DMLS elements use is the aerospace industry. In this area, the additive manufacturing technology produces, i.a. parts of turbines. In addition to the aerospace and medical industries, DMLS technology is also used in motorsport for exhaust pipes or the gearbox parts. The research objects are samples for static tests. These samples were made of Ti6Al4V alloy by the DMLS method and the rolling method from a drawn rod. The aim of the paper is the mechanical properties comparative analysis of the Ti6Al4V alloy produced by the DMLS method under static loading conditions and microstructure analysis of this material.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 335 ◽  
Author(s):  
Stefan Gebke ◽  
Katrin Thümmler ◽  
Rodolphe Sonnier ◽  
Sören Tech ◽  
André Wagenführ ◽  
...  

Biopolymer-based flame retardants (FR) are a promising approach to ensure adequate protection against fire while minimizing health and environmental risks. Only a few, however, are suitable for industrial purposes because of their poor flame retardancy, complex synthesis pathway, expensive cleaning procedures, and inappropriate application properties. In the present work, wheat starch was modified using a common phosphate/urea reaction system and tested as flame retardant additive for wood fibers. The results indicate that starch derivatives from phosphate/urea systems can reach fire protection efficiencies similar to those of commercial flame retardants currently used in the wood fiber industry. The functionalization leads to the incorporation of fire protective phosphates (up to 38 wt.%) and nitrogen groups (up to 8.3 wt.%). The lowest levels of burning in fire tests were measured with soluble additives at a phosphate content of 3.5 wt.%. Smoldering effects could be significantly reduced compared to unmodified wood fibers. The industrial processing of a starch-based flame retardant on wood insulating materials exhibits the fundamental applicability of flame retardants. These results demonstrate that starch modified from phosphate/urea-systems is a serious alternative to traditional flame retardants.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Weidi He ◽  
Ying Zhou ◽  
Xiaolang Chen ◽  
Jianbing Guo ◽  
Dengfeng Zhou ◽  
...  

In this work, the ethylene-propylene-diene monomer/polypropylene (EPDM/PP) thermoplastic elastomer filled with intumescent flame retardants (IFR) is fabricated by melting blend. The IFR are constituted with melamine phosphate-pentaerythritol (MP/PER) by compounding and reactive extruding, respectively. The effects of two kinds of MP/PER with different contents on the thermal stability, flame retardancy, and mechanical properties of materials are investigated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94, cone calorimeter test (CCT), and scanning electron microscopy (SEM). FTIR results show that the reactive extruded MP/PER partly generates melamine pyrophosphate (MPP) compared with compound masterbatches. TGA data indicate that the best thermal stability is achieved when the molar ratio of MP/PER reaches 1.8. All the reactive samples show a higher flame retardancy than compound ones. The CCT results also exhibit the same trend as above in heat release and smoke production rate. The EPDM/PP composites filled with 30 and 35% reactive MP/PER exhibit the improved flame retardancy but become stiffer and more brittle. SEM photos display that better dispersion and smaller particle size are obtained for reactive samples.


2021 ◽  
Vol 1039 ◽  
pp. 493-509
Author(s):  
Nesreen Dakhel ◽  
Ameer A. Kadhim ◽  
Rasha Hayder Al-Khayat ◽  
Muhannad Al-Waily

Most artificial socket prostheses are applied to fatigue load; therefore, more failure of socket prostheses occur due to fatigue loading. Then, it was necessary to improve the fatigue characterizations of composite materials used to manufacture the artificial socket prostheses by using hybrid nanomaterials, with different types and amounts. So, this work suggested mixing two nanomaterials types to improve the mechanical and fatigue properties of composite materials. Therefore, the experimental work used to manufacture tensile and fatigue samples of composite with different nanoweight fraction effects, in addition to calculating the mechanical properties and fatigue behavior for its composite. There, strength and modulus of elasticity, in addition to, fatigue strength and life evaluating of composite with different nanomaterials mixing. Also, the numerical technique by using the finite element method is used to calculate fatigue life and strength of composite materials. Also, comparison fatigue results were calculated by experimental work with fatigue results evaluated by numerical technique to give the discrepancy for results evaluation. Hence, the comparison of results showed good agreement for the technique used to evaluate the fatigue behavior of composite materials with the nanoeffect, where, the maximum error did not exceed (11.86%). Finally, the results have shown that the reinforcement by mixing two Nanomaterial types lead to improvement in the mechanical properties and fatigue behavior to more than (35%) and increasing the mechanical properties and fatigue behavior to (10%) more than the increase of properties and fatigue characterizations reinforcement by one Nanomaterial type.


Sign in / Sign up

Export Citation Format

Share Document