scholarly journals A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4264
Author(s):  
Larissa Kotelevets ◽  
Eric Chastre

Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1443
Author(s):  
Yoshiaki Kamiyama ◽  
Sotaro Katagiri ◽  
Taishi Umezawa

Reversible phosphorylation is a major mechanism for regulating protein function and controls a wide range of cellular functions including responses to external stimuli. The plant-specific SNF1-related protein kinase 2s (SnRK2s) function as central regulators of plant growth and development, as well as tolerance to multiple abiotic stresses. Although the activity of SnRK2s is tightly regulated in a phytohormone abscisic acid (ABA)-dependent manner, recent investigations have revealed that SnRK2s can be activated by group B Raf-like protein kinases independently of ABA. Furthermore, evidence is accumulating that SnRK2s modulate plant growth through regulation of target of rapamycin (TOR) signaling. Here, we summarize recent advances in knowledge of how SnRK2s mediate plant growth and osmotic stress signaling and discuss future challenges in this research field.


2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


2012 ◽  
Vol 40 (6) ◽  
pp. 1378-1382 ◽  
Author(s):  
Alan Hall

Rho GTPases comprise a family of molecular switches that control signal transduction pathways in eukaryotic cells. A conformational change induced upon binding GTP promotes an interaction with target (effector) proteins to generate a cellular response. A highly conserved function of Rho GTPases from yeast to humans is to control the actin cytoskeleton, although, in addition, they promote a wide range of other cellular activities. Changes in the actin cytoskeleton drive many dynamic aspects of cell behaviour, including morphogenesis, migration, phagocytosis and cytokinesis, and the dysregulation of Rho GTPases is associated with numerous human diseases and disorders.


2006 ◽  
Vol 17 (11) ◽  
pp. 4888-4895 ◽  
Author(s):  
Fumiaki Okahara ◽  
Kouichi Itoh ◽  
Akira Nakagawara ◽  
Makoto Murakami ◽  
Yasunori Kanaho ◽  
...  

The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates diverse cellular functions by dephosphorylating the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP3). Recent study revealed that PICT-1/GLTSCR2 bound to and stabilized PTEN protein in cells, implicating its roles in PTEN-governed PIP3 signals. In this study, we demonstrate that RNA interference-mediated knockdown of PICT-1 in HeLa cells down-regulated endogenous PTEN and resulted in the activation of PIP3 downstream effectors, such as protein kinase B/Akt. Furthermore, the PICT-1 knockdown promoted HeLa cell proliferation; however the proliferation of PTEN-null cells was not altered by the PICT-1 knockdown, suggesting its dependency on PTEN status. In addition, apoptosis of HeLa cells induced by staurosporine or serum-depletion was alleviated by the PICT-1 knockdown in the similar PTEN-dependent manner. Most strikingly, the PICT-1 knockdown in HeLa and NIH3T3 cells promoted anchorage-independent growth, a hallmark of tumorigenic transformation. Furthermore, PICT-1 was aberrantly expressed in 18 (41%) of 44 human neuroblastoma specimens, and the PICT-1 loss was associated with reduced PTEN protein expression in spite of the existence of PTEN mRNA. Collectively, these results suggest that PICT-1 plays a role in PIP3 signals through controlling PTEN protein stability and the impairment in the PICT-1–PTEN regulatory unit may become a causative factor in human tumor(s).


2005 ◽  
Vol 25 (2) ◽  
pp. 545-553 ◽  
Author(s):  
Mark Brady ◽  
Nikolina Vlatković ◽  
Mark T. Boyd

ABSTRACT p53 is a critical coordinator of a wide range of stress responses. To facilitate a rapid response to stress, p53 is produced constitutively but is negatively regulated by MDM2. MDM2 can inhibit p53 in multiple independent ways: by binding to its transcription activation domain, inhibiting p53 acetylation, promoting nuclear export, and probably most importantly by promoting proteasomal degradation of p53. The latter is achieved via MDM2's E3 ubiquitin ligase activity harbored within the MDM2 RING finger domain. We have discovered that MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilization in an MDM2 RING finger-dependent manner. Moreover, using small interfering RNA to down-regulate endogenous MTBP in unstressed cells, we have found that MTBP significantly contributes to MDM2-mediated regulation of p53 levels and activity. However, following exposure of cells to UV, but not γ-irradiation, MTBP is destabilized as part of the coordinated cellular response. Our findings suggest that MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells.


2018 ◽  
Vol 10 (6) ◽  
pp. 549-558 ◽  
Author(s):  
Lauren Rusnak ◽  
Cong Tang ◽  
Qi Qi ◽  
Xiulei Mo ◽  
Haian Fu

Abstract Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein–protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1–MKK–JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.


Crustaceana ◽  
2017 ◽  
Vol 90 (11-12) ◽  
pp. 1427-1442
Author(s):  
Bei Xue ◽  
Pei Zhang ◽  
Zhi H. Li ◽  
Lian Zhao ◽  
Xiao F. Lai ◽  
...  

The p38 mitogen-activated protein kinases (MAPK) are a kind of Ser/Thr protein kinases that convert extracellular stimuli into a wide range of cellular response, appearing to function not only in stress stimuli but also in development. To explore the function of p38 MAPK inPalaemon carinicaudaHolthuis, 1950, we cloned and characterized the full-length cDNA sequence (GenBank accession number KX893515) (designated asPc-p38). The results showed that the open reading frame (ORF) ofPc-p38was 1098 bp and it encoded a protein of 365 amino acids.Pc-p38contained the conserved structures of a Thr-Gly-Tyr (TGY) motif and a substrate-binding site, Ala-Thr-Arg-Trp (ATRW), and was shown to have a close phylogenetic relationship to other p38 MAPKs in crustaceans. The tissue distribution patterns showed thatPc-p38was widely expressed in all tissues, with highest expression in the hepatopancreas and ovary. Quantitative real-time PCR revealed thatPc-p38was upregulated during ecdysis, reaching a peak at 5 min post-moult, suggesting thatPc-p38may be involved in muscle remodeling after moulting. In addition, the expression ofPc-p38increased following exposure to different concentrations of mercury, in a dose- and time-dependent manner. In conclusion, anPc-p38gene was cloned and its role determined at different times post-moult and after stress from different concentrations of mercury, to further reveal the possible functions of p38 MAPK inP. carinicauda.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Cristina A Wolf ◽  
Izabela Bobak ◽  
Xinming Su ◽  
Ellen Damm ◽  
Katherine N Weilbaecher ◽  
...  

Communication between cells and the surrounding environment is a crucial mechanism for survival. Integrins are membrane-bound molecules that are involved in signaling between the cells and the extracellular matrix, thereby influencing cytoskeletal stability and intracellular signaling. β3 integrin and its binding partner αv form the αvβ3 heterodimer that is expressed in various cells. We and others have described the consequences of its absence in inflammation, atherosclerosis and cancer in vivo. However, the distinct role of this integrin as a signaling molecule and the consequences of its absence for macrophage structure remain mostly elusive. Our aim is to further characterize the phenotype of β3-deficient (β3-/-) bone marrow-derived macrophages (BMDM) under stimulatory conditions (LPS and LDLs) compared to control cells in vitro. qPCR, WB, ELISA, migration, proliferation assays were used to investigate β3-/- BMDM and controls (wt BMDM and Raw 264.7). LPS was described to be not only pro- but also anti-inflammatory in a time-dependent manner. We show that LPS stimulation leads to high expression of pro-inflammatory cytokines (IL-1β and TNFα) shortly after treatment, while expression of anti-inflammatory cytokine (IL-10) arises at a later stage (12h post stimulation). Interestingly, β3-/- BMDM express more IL-1β than controls. IL-10 expression appears much earlier in β3-/- BMDM (6h post stimulation) but is reduced after 12h, indicating a faster and higher cellular response in the absence of the β3 integrin. OxLDL, the leading cause to foam cell formation, stimulates the expression of IL-1β in controls and β3-/- BMDM with the latter expressing significantly less of this cytokine indicating that lack of β3 causes differential cellular responses after LPS and oxLDL stimulation. Other LDL forms tested (nLDL, acLDL, cLDL) did not have any effect on IL-1β expression. In addition, we identified a higher proliferation rate in the β3-/- BMDM when cultured with M-CSF and a migration deficit in response to LPS, M-CSF and VEGF. Taken together, our results show that macrophage β3 deficiency causes differential cellular plasticity depending on the stimulus, with functional consequences that could be essential in inflammation and atherosclerosis.


2018 ◽  
Vol 293 (47) ◽  
pp. 18218-18229 ◽  
Author(s):  
Jun Wang ◽  
Tao Shen ◽  
Wuqiang Zhu ◽  
Longyu Dou ◽  
Hao Gu ◽  
...  

Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53+/−pp5+/− or p53+/−pp5−/− mice revealed that complete loss of PP5 reduces tumorigenesis in the p53+/− mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.


2020 ◽  
Vol 21 (14) ◽  
pp. 4949
Author(s):  
Martin Spillmann ◽  
Larissa Thurner ◽  
Nina Romantini ◽  
Mirjam Zimmermann ◽  
Benoit Meger ◽  
...  

G protein-coupled receptors (GPCRs) are cellular master regulators that translate extracellular stimuli such as light, small molecules or peptides into a cellular response. Upon ligand binding, they bind intracellular proteins such as G proteins or arrestins, modulating intracellular signaling cascades. Here, we use a protein-fragment complementation approach based on nanoluciferase (split luciferase assay) to assess interaction of all four known human arrestins with four different GPCRs (two class A and two class B receptors) in live cells. Besides directly tagging the 11S split-luciferase subunit to the receptor, we also could demonstrate that membrane localization of the 11S subunit with a CAAX-tag allowed us to probe arrestin recruitment by endogenously expressed GPCRs. Varying the expression levels of our reporter constructs changed the dynamic behavior of our assay, which we addressed with an advanced baculovirus-based multigene expression system. Our detection assay allowed us to probe the relevance of each of the two arrestin binding sites in the different GPCRs for arrestin binding. We observed remarkable differences between the roles of each arresting binding site in the tested GPCRs and propose that the distinct advantages of our system for probing receptor interaction with effector proteins will help elucidate the molecular basis of GPCR signaling efficacy and specificity in different cell types.


Sign in / Sign up

Export Citation Format

Share Document