scholarly journals The Effect of Cow Dung Ash as A Filler on The Mechanical Characteristics of Hot Mix Asphalt

2022 ◽  
Vol 961 (1) ◽  
pp. 012041
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Yasir N. Kadhim ◽  
Wail Asim Mohammad Hussain ◽  
Ghazi Jalal Kashesh ◽  
Hayder Adnan Abdulhussein

Abstract Highway pavements are being exposed to increasing traffic loads and severe environmental conditions, resulting in reduced service life. A lot of studies have been conducted to modify asphalt by using different materials, especially to replace the ordinary filler. Because the behaviour of the hot asphalt mix is influenced by the fillers. The use of unusual materials as fillers in asphalt mixes can help to improve the mix’s characteristics. As a result, this study uses cow dung ash materials with various replacement ratios as fillers to investigate the mechanical properties of asphalt. In the asphalt mix, a replacement percentage of limestone (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100%) was utilized. After that, various tests were performed such as Marshall stability, Marshall flow, voids in mineral aggregate, theoretical maximum specific gravity, air voids. The results revealed a significant improvement in the asphalt mix’s behaviour, as well as an increase in the replacement percentage. According to the findings, the 50% replacement rate has the highest Marshall stability which is equal to 11.11 with a 33.5% rise and the lowest flow of 3 with a 17.83% decrease when compared to the reference mix. As a result, cow dung ash can be used as a filler to modify the mechanical properties of the asphalt mix.

Author(s):  
H. Mohammed

The effect of coal bottom ash (CBA) on the characteristics of asphaltic concrete was investigated with a view to assess its suitability as a partial replacement of fine aggregate. Coal procured from Lafia-Obi coal mines was burnt in a fixed bed combustor until a sand size residual was produced. The properties of the materials used for the study were characterize using standard procedures. The CBA was introduced in the asphalt mix at an increasing rate of 10, 15, 20 and 25% content by weight of the fine aggregate and test samples of asphaltic concrete were prepared. The samples were subjected to Marshall stability test. Results showed that the specific gravity and absorption test for granite dust were 2.45 and 0.25%, respectively, while those of the CBA were 2.86 and 0.58% respectively. The result of stability, flow, bulk density, voids filled in bitumen (VFB), air voids (VA) and voids in mineral aggregate (VMA) of the asphaltic concrete at 0% CBA were 12.02 kN, 3.04 mm, 2.491g/cm3, 66.0%, 4.3%, 12.7% respectively; while the values at 20% CBA content were 16.97 kN, 3.51mm, 2.514g/ cm3 , 71.2%, 3.4%, 11.9% respectively. The result showed that coal bottom ash in asphaltic mix improved its properties.


2022 ◽  
Vol 961 (1) ◽  
pp. 012042
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Laith Sh. Rasheed ◽  
Laith Mohammed Ridha Mahmmod ◽  
Safaa S. Mohammed ◽  
Noor R. Kadhim

Abstract Internal curing has long been utilized to decrease self-shrinkage and consequently the increased danger of concrete cracking prematurely. The measured mechanical characteristics of concrete were studied in five mixes, both with and without internal curing. Two of these mixtures have a 10% replacement rate, with one using ceramic and the other Attapulgite, while the other two have a 20% replacement, with one using ceramic and the other using Attapulgite, and the fifth is a reference mixture with no replacement for comparative reasons. With an increase of 27.93%, the ceramic combination with a 20% replacement rate is judged to have the highest compressive resistance, followed by the Attapulgite mixture with a 20% replacement rate with an increase of 34.2%. The results showed that the ceramic and Attapulgite internal curing purposes were highly effective, especially with a 20% replacement. The use of crushed ceramics and attapulgite as internal curing materials improves the characteristics of concrete.


2003 ◽  
Vol 1832 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Robert L. Peterson ◽  
Kamyar C. Mahboub ◽  
R. Michael Anderson ◽  
Eyad Masad ◽  
Laith Tashman

Laboratory compaction is an important part of asphalt mix design. For the mix design process to be effective, laboratory compaction must adequately simulate field compaction. In this study mechanical properties measured with the Superpave® shear tester were used to evaluate field compaction and laboratory compaction. The field compaction consisted of three test sections with different compaction patterns. The laboratory compaction used the Superpave gyratory compactor with adjustments to several parameters. Results of this study indicate that current gyratory protocol produces specimens with significantly different mechanical properties than those of field cores produced with the same material and compacted to the same air voids. Results also show that adjustments to certain parameters of the gyratory can produce specimens that better simulate the mechanical properties of pavement cores.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


2020 ◽  
Vol 836 ◽  
pp. 41-45
Author(s):  
S.N. Dzhabbarov ◽  
E.I. Pryakhin

Development of an optimal technology of heat treatment for blanks of the casing pipe made of steel 40H (GOST 4543) is used in the oil and gas industry for casing. It is accompanied by quenching in various environments to ensure guaranteed obtainment of the required mechanical characteristics. These characteristics are specified in GOST 632-80 and met in order to improve the properties of the 40H steel.


2020 ◽  
Vol 49 (6) ◽  
pp. 465-472
Author(s):  
S. Raj Sachin ◽  
T. Kandasamy Kannan ◽  
Rathanasamy Rajasekar

Purpose The purpose of this study is to carry out an investigation of the role of the wood particle size on the mechanical properties of poly lactic acid (PLA)-reinforced neem fiber biocomposite. Design/methodology/approach Composite test specimens were processed by reinforcing neem wood flour (NWF) in two different particle sizes, micro-sized NWF (MNWF) and nano-sized NWF (NNWF) separately into PLA. Composites were extruded at four different fiber loadings (10, 15, 20 and 25 Wt.%) into PLA matrix. The MNWF and NNWF had particle sizes varying from 5 to 15 µm and 10 to 15 nm, respectively. Findings Tensile strength, flexural strength and impact strength of PLA increased with fiber reinforcement for both the MNWF and NNWF cases. The NNWF-reinforced PLA composite at 20 Wt.% fiber loading proved to be the best composite that had outstanding mechanical properties in this research. Practical implications The developed composite can be used as a substitute for conventional plywood for furniture, building infrastructure and interior components for the automobile, aircraft and railway sectors. Originality/value A new biocomposite had been fabricated by using PLA and NWF and had been tested for its mechanical characteristics.


2011 ◽  
Vol 418-420 ◽  
pp. 406-410
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Dan Dan Hong ◽  
Yu Liu

Abstract. Recycled aggregate—rural building material wastes pretreated by cement mortar—are applied into concrete with different replacement rates: 0, 25%, 50%, 75%, and 100%. Results from measurements of compressive strength, cleavage tensile strength, mass loss after fast freeze-thaw cycles, and compressive strength loss indicate that a different recycled aggregate replacement rate certainly influences concrete mechanical properties and frost resistance. Recycled aggregate replacement rates less than 75% performs better than common concrete. Data from the 100% replacement rate is worse than that of rates less than 75% but still satisfy the general demands of GB standard on C30 concrete.


Sign in / Sign up

Export Citation Format

Share Document