scholarly journals Epigenetic biomarkers of ageing are predictive of mortality risk in a longitudinal clinical cohort of individuals diagnosed with oropharyngeal cancer

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Rhona A. Beynon ◽  
Suzanne M. Ingle ◽  
Ryan Langdon ◽  
Margaret May ◽  
Andy Ness ◽  
...  

Abstract Background Epigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG sites. The difference between age predicted by these clocks and chronological age, termed “epigenetic age acceleration”, has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of epigenetic age acceleration and a DNA methylation-based mortality risk score with all-cause mortality in a prospective clinical cohort of individuals with head and neck cancer: Head and Neck 5000. We investigated two markers of intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age acceleration (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno), one optimised to predict lifespan (AgeAccelGrim) and a DNA methylation-based predictor of mortality (ZhangScore). Cox regression models were first used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age acceleration with all-cause mortality in people with oropharyngeal cancer (n = 408; 105 deaths). The added prognostic value of epigenetic markers compared to a clinical model including age, sex, TNM stage and HPV status was then evaluated. Results IEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle factors (HRs per standard deviation [SD] increase in age acceleration = 1.30 [95% CI 1.07, 1.57; p = 0.007] and 1.40 [95% CI 1.06, 1.83; p = 0.016], respectively). There was weak evidence that the addition of AgeAccelGrim to the clinical model improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p value for difference = 0.069). Conclusion In the setting of a large, clinical cohort of individuals with head and neck cancer, our study demonstrates the potential of epigenetic markers of ageing to enhance survival prediction in people with oropharyngeal cancer, beyond established prognostic factors. Our findings have potential uses in both clinical and non-clinical contexts: to aid treatment planning and improve patient stratification.

2020 ◽  
Author(s):  
Rhona A Beynon ◽  
Suzanne M Ingle ◽  
Ryan Langdon ◽  
Margaret May ◽  
Andy Ness ◽  
...  

AbstractBackgroundEpigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG sites. The difference between predicted age from these clocks and chronological age (“epigenetic age acceleration”) has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of epigenetic age acceleration with all-cause mortality in a prospective clinical cohort of individuals with head and neck cancer: Head and Neck 5000.MethodsWe investigated two markers of intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age acceleration (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno) and one optimised to predict lifespan (AgeAccelGrim). Cox regression models were first used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age acceleration with all-cause mortality in people with oropharyngeal cancer (n=408;105 deaths). The added prognostic value of epigenetic measures compared to a clinical model including age, gender, TNM stage and HPV status was then evaluated.ResultsIEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle factors [HRs per standard deviation (SD) increase in age acceleration =1.32 (95% CI=1.08, 1.61; p=0.007) and 1.39 (95% CI =1.06, 1.83; p=0.017), respectively]. There was weak evidence that the addition of AgeAccelGrim to the clinical model improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p-value for difference=0.069).ConclusionOur study demonstrates the potential of epigenetic age acceleration measures to enhance survival prediction in people with oropharyngeal cancer, beyond established prognostic factors.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tess D. Pottinger ◽  
Sadiya S. Khan ◽  
Yinan Zheng ◽  
Wei Zhang ◽  
Hilary A. Tindle ◽  
...  

Abstract Background Cardiovascular health (CVH) has been defined by the American Heart Association (AHA) as the presence of the “Life’s Simple 7” ideal lifestyle and clinical factors. CVH is known to predict longevity and freedom from cardiovascular disease, the leading cause of death for women in the United States. DNA methylation markers of aging have been aggregated into a composite epigenetic age score, which is associated with cardiovascular morbidity and mortality. However, it is unknown whether poor CVH is associated with acceleration of aging as measured by DNA methylation markers in epigenetic age. Methods and results We performed a cross-sectional analysis of racially/ethnically diverse post-menopausal women enrolled in the Women’s Health Initiative cohort recruited between 1993 and 1998. Epigenetic age acceleration (EAA) was calculated using DNA methylation data on a subset of participants and the published Horvath and Hannum methods for intrinsic and extrinsic EAA. CVH was calculated using the AHA measures of CVH contributing to a 7-point score. We examined the association between CVH score and EAA using linear regression modeling adjusting for self-reported race/ethnicity and education. Among the 2,170 participants analyzed, 50% were white and mean age was 64 (7 SD) years. Higher or more favorable CVH scores were associated with lower extrinsic EAA (~ 6 months younger age per 1 point higher CVH score, p < 0.0001), and lower intrinsic EAA (3 months younger age per 1 point higher CVH score, p < 0.028). Conclusions These cross-sectional observations suggest a possible mechanism by which ideal CVH is associated with greater longevity.


2021 ◽  
pp. 109980042098389
Author(s):  
Jongmin Park ◽  
Chang Won Won ◽  
Leorey N. Saligan ◽  
Youn-Jung Kim ◽  
Yoonju Kim ◽  
...  

Background: Epigenetic age acceleration has been studied as a promising biomarker of age-related conditions, including cognitive aging. This pilot study aims to explore potential cognitive aging-related biomarkers by investigating the relationship of epigenetic age acceleration and cognitive function and by examining the epigenetic age acceleration differences between successful cognitive aging (SCA) and normal cognitive aging (NCA) among Korean community-dwelling older adults (CDOAs). Methods: We used data and blood samples of Korean CDOAs from the Korean Frailty and Aging Cohort Study. The participants were classified into two groups, SCA (above the 50th percentile in all domains of cognitive function) and NCA. The genome-wide DNA methylation profiling array using Illumina Infinium MethylationEPIC BeadChip was used to calculate the following: the DNA methylation age, universal epigenetic age acceleration, intrinsic epigenetic age acceleration (IEAA), and extrinsic epigenetic age acceleration (EEAA). We also used Pearson correlation analysis and independent t-tests to analyze the data. Results: Universal age acceleration correlated with the Frontal Assessment Battery test results ( r = −0.42, p = 0.025); the EEAA correlated with the Word List Recognition test results ( r = −0.41, p = 0.027). There was a significant difference between SCA and NCA groups in IEAA ( p = 0.041, Cohen’s d = 0.82) and EEAA ( p = 0.042, Cohen’s d = 0.78). Conclusions: Epigenetic age acceleration can be used as a biomarker for early detection of cognitive decline in Korean community-dwelling older adults. Large longitudinal studies are warranted.


2020 ◽  
pp. 1-10
Author(s):  
Hongwei Wu ◽  
Qiang Li ◽  
Lijing Fan ◽  
Dewang Zeng ◽  
Xianggeng Chi ◽  
...  

<b><i>Background:</i></b> Previous studies have reported that serum magnesium (Mg) deficiency is involved in the development of heart failure, particularly in patients with end-stage kidney disease. The association between serum Mg levels and mortality risk in patients receiving hemodialysis is controversial. We aimed to estimate the prognostic value of serum Mg concentration on all-cause mortality and cardiovascular mortality in patients receiving hemodialysis. <b><i>Methods:</i></b> We did a systematic literature search in PubMed, EMBASE, Cochrane Library, and Web of Science to identify eligible studies that reported the prognostic value of serum Mg levels in mortality risk among patients on hemodialysis. We performed a meta-analysis by pooling and analyzing hazard ratios (HRs) and 95% confidence intervals (CIs). <b><i>Results:</i></b> We identified 13 observational studies with an overall sample of 42,967 hemodialysis patients. Higher all-cause mortality (adjusted HR 1.58 [95% CI: 1.31–1.91]) and higher cardiovascular mortality (adjusted HR 3.08 [95% CI: 1.27–7.50]) were found in patients with lower serum Mg levels after multivariable adjustment. There was marked heterogeneity (<i>I</i><sup>2</sup> = 79.6%, <i>p</i> &#x3c; 0.001) that was partly explained by differences in age stratification and study area. In addition, subgroup analysis showed that a serum Mg concentration of ≤1.1 mmol/L might be the vigilant cutoff value. <b><i>Conclusion:</i></b> A lower serum Mg level was associated with higher all-cause mortality and cardiovascular mortality in patients receiving hemodialysis.


2021 ◽  
Vol 13 ◽  
Author(s):  
Pei-Lun Kuo ◽  
Ann Zenobia Moore ◽  
Frank R. Lin ◽  
Luigi Ferrucci

Objectives: Age-related hearing loss (ARHL) is highly prevalent among older adults, but the potential mechanisms and predictive markers for ARHL are lacking. Epigenetic age acceleration has been shown to be predictive of many age-associated diseases and mortality. However, the association between epigenetic age acceleration and hearing remains unknown. Our study aims to investigate the relationship between epigenetic age acceleration and audiometric hearing in the Baltimore Longitudinal Study of Aging (BLSA).Methods: Participants with both DNA methylation and audiometric hearing measurements were included. The main independent variables are epigenetic age acceleration measures, including intrinsic epigenetic age acceleration—“IEAA,” Hannum age acceleration—“AgeAccelerationResidualHannum,” PhenoAge acceleration—“AgeAccelPheno,” GrimAge acceleration—“AgeAccelGrim,” and methylation-based pace of aging estimation—“DunedinPoAm.” The main dependent variable is speech-frequency pure tone average. Linear regression was used to assess the association between epigenetic age acceleration and hearing.Results: Among the 236 participants (52.5% female), after adjusting for age, sex, race, time difference between measurements, cardiovascular factors, and smoking history, the effect sizes were 0.11 995% CI: (–0.00, 0.23), p = 0.054] for Hannum’s clock, 0.08 [95% CI: (–0.03, 0.19), p = 0.143] for Horvath’s clock, 0.10 [95% CI: (–0.01, 0.21), p = 0.089] for PhenoAge, 0.20 [95% CI: (0.06, 0.33), p = 0.004] for GrimAge, and 0.21 [95% CI: (0.09, 0.33), p = 0.001] for DunedinPoAm.Discussion: The present study suggests that some epigenetic age acceleration measurements are associated with hearing. Future research is needed to study the potential subclinical cardiovascular causes of hearing and to investigate the longitudinal relationship between DNA methylation and hearing.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. Smith ◽  
Jeremy Raisky ◽  
Scott M. Ratliff ◽  
Jiaxuan Liu ◽  
Sharon L. R. Kardia ◽  
...  

Abstract Background Epigenetic age acceleration, a measure of biological aging based on DNA methylation, is associated with cardiovascular mortality. However, little is known about its relationship with hypertensive target organ damage to the heart, kidneys, brain, and peripheral arteries. Methods We investigated associations between intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration, blood pressure, and six types of organ damage in a primarily hypertensive cohort of 1390 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. DNA methylation from peripheral blood leukocytes was collected at baseline (1996–2000), and measures of target organ damage were assessed in a follow-up visit (2000–2004). Linear regression with generalized estimating equations was used to test for associations between epigenetic age acceleration and target organ damage, as well as effect modification of epigenetic age by blood pressure or sex. Sequential Oligogenic Linkage Analysis Routines (SOLAR) was used to test for evidence of shared genetic and/or environmental effects between epigenetic age acceleration and organ damage pairs that were significantly associated. Results After adjustment for sex, chronological age, and time between methylation and organ damage measures, higher IEAA was associated with higher urine albumin to creatinine ratio (UACR, p = 0.004), relative wall thickness (RWT, p = 0.022), and left ventricular mass index (LVMI, p = 0.007), and with lower ankle-brachial index (ABI, p = 0.014). EEAA was associated with higher LVMI (p = 0.005). Target organ damage associations for all but IEAA with LVMI remained significant after further adjustment for blood pressure and antihypertensive use (p < 0.05). Further adjustment for diabetes attenuated the IEAA associations with UACR and RWT, and adjustment for smoking attenuated the IEAA association with ABI. No effect modification by age or sex was observed. Conclusions Measures of epigenetic age acceleration may help to better characterize the functional mechanisms underlying organ damage from cellular aging and/or hypertension. These measures may act as subclinical biomarkers for damage to the kidney, heart, and peripheral vasculature; however more research is needed to determine whether these relationships remain independent of lifestyle factors and comorbidities.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Emily W. Harville ◽  
Pashupati P. Mishra ◽  
Mika Kähönen ◽  
Emma Raitoharju ◽  
Saara Marttila ◽  
...  

Abstract Background Women with a history of complications of pregnancy, including hypertensive disorders, gestational diabetes or an infant fetal growth restriction or preterm birth, are at higher risk for cardiovascular disease later in life. We aimed to examine differences in maternal DNA methylation following pregnancy complications. Methods Data on women participating in the Young Finns study (n = 836) were linked to the national birth registry. DNA methylation in whole blood was assessed using the Infinium Methylation EPIC BeadChip. Epigenome-wide analysis was conducted on differential CpG methylation at 850 K sites. Reproductive history was also modeled as a predictor of four epigenetic age indices. Results Fourteen significant differentially methylated sites were found associated with both history of pre-eclampsia and overall hypertensive disorders of pregnancy. No associations were found between reproductive history and any epigenetic age acceleration measure. Conclusions Differences in epigenetic methylation profiles could represent pre-existing risk factors, or changes that occurred as a result of experiencing these complications.


Author(s):  
Jacob K Kresovich ◽  
Alexandra M Martinez Lopez ◽  
Emma L Garval ◽  
Zongli Xu ◽  
Alexandra J White ◽  
...  

Abstract Epigenetic age acceleration is considered a measure of biological aging based on genome-wide patterns of DNA methylation. Although age acceleration has been associated with incidence of diseases and death, less is known about how it is related to lifestyle behaviors. Among 2,316 women, we evaluate associations between self-reported alcohol consumption and various metrics of epigenetic age acceleration. Recent average alcohol consumption was defined as the mean number of drinks consumed per week within the past year; lifetime average consumption was estimated as the mean number of drinks per year drinking. Whole blood genome-wide DNA methylation was measured with HumanMethylation450 BeadChips and used to assess four epigenetic clocks (Hannum, Horvath, PhenoAge, GrimAge) and their corresponding metrics of epigenetic age acceleration (Hannum AgeAccel, Horvath AgeAccel, PhenoAgeAccel, GrimAgeAccel). Although alcohol consumption showed little association with most age acceleration metrics, both lifetime and recent average consumption measures were positively associated with GrimAgeAccel (lifetime, per additional 135 drinks/year: β=0.30 years, 95% CI: 0.11, 0.48, p=0.002; recent, per additional 5 drinks/week: β=0.19 years, 95% CI: 0.01, 0.37, p=0.04). In a mutually adjusted model, only average lifetime alcohol consumption remained associated with GrimAgeAccel (lifetime, per additional 135 drinks/year: β=0.27 years, 95% CI: 0.04, 0.50, p=0.02; recent, per 5 additional drinks/week: β=0.05 years, 95% CI: -0.16, 0.26, p=0.64). Although alcohol use does not appear to be strongly associated with biological age measured by most epigenetic clocks, lifetime average consumption is associated with higher biological age assessed by the GrimAge epigenetic clock.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunhong Hong ◽  
Shaohua Yang ◽  
Qiaojin Wang ◽  
Shiqiang Zhang ◽  
Wenhui Wu ◽  
...  

Background: Abnormal DNA methylation (DNAm) age has been assumed to be an indicator for canceration and all-cause mortality. However, associations between DNAm age and molecular features of stomach adenocarcinoma (STAD), and its prognosis have not been systematically studied.Method: We calculated the DNAm age of 591 STAD samples and 115 normal stomach samples from The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) database using the Horvath’s clock model. Meanwhile, we utilized survival analysis to evaluate the prognostic value of DNAm age and epigenetic age acceleration shift. In addition, we performed weighted gene co-expression network analysis (WGCNA) to identify DNAm age-associated gene modules and pathways. Finally, the association between DNAm age and molecular features was performed by correlation analysis.Results: DNA methylation age was significantly correlated with chronological age in normal gastric tissues (r = 0.85, p &lt; 0.0001), but it was not associated with chronological age in STAD samples (r = 0.060, p = 0.2369). Compared with tumor adjacent normal tissue, the DNAm age of STAD tissues was significantly decreased. Meanwhile, chronological age in STAD samples was higher than its DNAm age. Both DNAm age and epigenetic acceleration shift were associated with the prognosis of STAD patients. By using correlation analysis, we also found that DNAm age was associated with immunoactivation and stemness in STAD samples.Conclusion: In summary, epigenetic age acceleration of STAD was associated with tumor stemness, immunoactivation, and favorable prognosis.


Sign in / Sign up

Export Citation Format

Share Document