scholarly journals Effect of Sulfur Content on the Inclusion and Mechanical Properties in Ce-Mg Treated Resulfurized SCr420H Steel

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
Meng Sun ◽  
Zhouhua Jiang ◽  
Yang Li ◽  
Changyong Chen ◽  
Shuai Ma ◽  
...  

To clarify the effect of sulfur on inclusions and mechanical properties of Ce-Mg treated resulfurized SCr420H steel. Laboratory experiments were conducted to prepare steels with sulfur contents as 0.01%, 0.06%, and 0.132%. Inclusion evolution in liquid steel, MnS precipitation during solidification, and tensile test results of steel after quenching and tempering were investigated. The results showed that due to the limitation of mass transfer in molten steel, composite inclusion that Ce-O-S wrapped by Ce-Ca-Mg-Al-Si-O, which was named transition state inclusions, can form quickly after adding Ce-Mg lump to the molten steel. As the homogenization of molten steel, the difference of sulfur content in steel can lead to the transition state inclusions transformed into different inclusions. With the increase of sulfur content, the quantity of MnS increased significantly, and the morphology of MnS transformed from “stick” to “dendritic + fishbone”, and then to “fishbone”. Tensile test results and fracture analysis indicate that the decline of inclusion spacing as the increase of sulfur content leads to a shorter physical path of crack propagation in steel. Therefore, the increase of sulfur content can bring about a decrease in the strength and plasticity of the steel. From the perspective of inclusion control, making the MnS inclusion precipitate more dispersive and increasing the distance between inclusions can be considered as a method for preventing the decline of mechanical properties in steel with high sulfur content.

2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


1969 ◽  
Vol 39 (3) ◽  
pp. 261-266 ◽  
Author(s):  
L. D. Armstrong ◽  
M. Feughelman

The mechanical properties in torsion of single wool fibers of biologically produced high- and low-sulfur content have been studied to determine the effects on torsional behavior. The modulus of rigidity and the torsional relaxation, i.e., the decay in torque with time at a constant degree of twist, were determined in fibers tested in glycerol (~0% RH), distilled water, and aqueous solutions of HCl at pH 0.8, 1.8, and 2.9. The sulfur content had no significant effect on the modulus of ridigidy or on the magnitude of the torsional relaxation of dry fibers. Again, for fibers tested in distilled water, no significant effect of sulfur content on the modulus of rigidity was observed, but the percent decay in torque was measurably affected. The decay in torque in 1 hr for fibers of normal wool amounted to 23% of the initial torque and that for fibers of sulfur-enriched wool amounted to 15%. This difference in torsional relaxation behavior of wet fibers of the two wools was not thought to be due to the difference in sulfur content but may partly be linked with the aspartic acid content of the two wools. The modulus of rigidity and the torsional relaxation of fibers in aqueous HCl decreased with decreasing pH to as little as one third of the values obtained in distilled water, presumably due to the breaking of salt links, the decrease being greater for the sulfur-enriched wools.


2007 ◽  
Vol 561-565 ◽  
pp. 311-314 ◽  
Author(s):  
Kaname Fujii ◽  
Tokimasa Kawabata ◽  
Kenji Matsuda ◽  
Susumu Ikeno

Changes in the mechanical properties on AZ91 Mg alloy cast into sand mold caused by heat-treatment and its microstructure were investigated by the tensile test and observation using optical and scanning electron microscopes, and chemical composition analysis. Tensile test results show that the specimens aged at 441K have larger elongation than those of aged at 489K, although they had same proof stress. The fracture surface observation reveal the cleavage fracture of aged specimen caused by the nodular structure as well as the formation of micro void around the coarse spheroidal Al-Mn-(Fe) phase.


2012 ◽  
Vol 445 ◽  
pp. 213-218 ◽  
Author(s):  
Ahmet Koyun ◽  
Baris Koksal ◽  
Esma Ahlatcioglu ◽  
A. Binnaz Hazar Yoruc

The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications involve some degree of mechanical loading [1]. In the present work three different commercial polyethylene materials are tensile tested at four or five different tensile rates and two or three temperatures. Tensile test results against tensile rate include stress at 0.5 % elongation, tensile strength, yield strength, modulus of elasticity, elongation at yield and % elongation are determined. It is concluded that the structure, chain lengths and branching rates of polymer matrix significantly effected tensile test curve characteristic.


2018 ◽  
Vol 197 ◽  
pp. 12003
Author(s):  
Edi Widodo ◽  
Iswant Iswanto ◽  
Mirtza Adi Nugraha ◽  
Karyanik Karyanik

Parameters in the welding need to be known because the effect on the mechanical properties of the material after the welding process. This research purposes to find out the influence of variation of SMAW welding current on Stainless Steel AISI 304, with variation of electric current equal to 70A, 80A and 90A.The electrode of AWS A5.4 E308-16 with diameter of 2.6 mm is used. Dye penetrant test, tensile test and metallographic test applied to analysis the characteristic. Based on data from tensile test results obtained the highest value on the specimen welding current 90A is equal to 632 MPa. The lowest tensile strength value recorded on the specimens of current 70A is 498.66 MPa.


2007 ◽  
Vol 348-349 ◽  
pp. 281-284
Author(s):  
Yu Feng Zheng ◽  
Yan Bo Wang

The phase constitution, mechanical properties, and corrosion behavior of TiMoSn alloys were investigated by means of XRD, tensile test, electrochemical measurement and XPS techniques. The XRD analysis results showed that at room temperature TiMoSn alloys are mainly composed of β phase, with minor content of α" phase, in as-cast and solid solution treated conditions. The tensile test results indicate that the elastic moduli of the Ti-Mo-Sn alloys are in the range of 52~74GPa. The electrochemical measurement results indicate that TiMoSn alloys have excellent corrosion resistance in simulated body fluid. The XPS analysis results reveal that the passive films of TiMoSn alloys after polarization consist of TiO2, SnO2 and Mo2O5.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Zamah Syari

AbstrakAluminium adalah logam Non-Ferrous yang banyak digunakan pada proses pengecoran , Aluminium pada keadaan murni mempunyai sifat mekanik yang buruk sehingga perlu ditambahkan unsur paduan lain guna meningkatkan sifat mekanisnya. Sehingga perlu dilakukan penelitian menggunakan metode eksperimen pada paduan Aluminium-Magnesium. Tujuan dari penelitian ini adalah untuk mengetahui nilai tegangan dan regangan dengan uji tarik pada aduan Aluminium- Magnesium untuk digunakan sebagai bahan pada dudukan Shockbreaker sepeda motor dengan penambahan unsur magnesium sebesar 3%, 5%, dan 7%. Hasil uji tarik menunjukkan sifat mekanis Aluminium dengan penambahan unsur Magnesium. Nilai tegangan pada paduan Al-Mg 3%, Al-Mg 5%, dan Al-Mg 7% berturut-turut adalah 161,15 MPa, 142,04 Mpa dan 91,28 MPa dan nilai regangan pada paduan Al-Mg 3%, Al-Mg 5%, dan Al-Mg 7% adalah 0,05, 0,03 dan 0,02. Nilai tegangan dan regangan dapat dilihat perbedaannya pada setiap spesimen uji. Dengan bertambahnya persen Magnesium pada pengujian tarik maka nilai tegangan dan regangan akan menurun.Kata kunci : Aluminium-Magnesium, Uji tarik, Tegangan dan Regangan, Dudukan Shockbreaker.AbstractAluminium is a Non-Ferrous metal that is widely used in casting process, aluminium in pure state has poor mechanical properties, so it is necessary to add other alloying elements to improve its mechanical properties. so it is necessary to do research using eksperimental method on aluminium-magnesium. The purpose of the research is to know the stress and strain with tensile test on aluminium-magnesium alloy to be used as material on motorbike shockbreaker holder with addition magnesium 3%, 5% and 7%. Tensile test results show the mecanical properties of aluminium with The addition of magnesium elementer. The stress values of alloy of Al-Mg 3%, AlMg 5% and Al-Mg 7% were 161,15 MPa, 142,04 MPa And 91, MPa and 91,28 MPa respectively. And value of strain on alloys Al-Mg 3%, Al-Mg 5% and 7% is 0,05, 0,03 and 0,02. The stress and strain values can be seen diffferently on each test, The stress and strain values will decrease.Keywords : Aluminium-Magnesium, Tensile test, stress and strain, Shockbreaker Holder.


2021 ◽  
Vol 332 ◽  
pp. 01006
Author(s):  
Bartosz Nowinka ◽  
Dariusz Sykutera

The study presents the influence of content and orientation of continuous carbon fibers (CF) on the static tensile test results of a polyamide matrix (PA) composite, produced using Continuous Filament Fabrication (CFF) technology. Taking the polyamide’s crystalline structure into account, an attempt was also made to produce test specimens under various temperature conditions of the device chamber. The test samples were produced in use of the Mark Two device (Markforged, Great Britain). It has been shown that the content and orientation of the reinforcement in relation to the direction of stresses generated during the static tensile test, has a significant impact on the parameters determined in this test. The dependence presented in the article, confirms that materials in a thermoplastic matrix, reinforced with continuous fibers are a topic in line with the topic of current trends in fields of material engineering and design of structural products. The conducted research proves that the temperature in the working chamber of the Mark Two device affects formation of mechanical properties of PA+CF composites, fabricated using CFF technology. Manufacturing composites at elevated temperature resulted in significant decrease of E and Rm values for 4 out of five tests performed, but a considerable increase in their relative elongation at break was noticed.


2012 ◽  
Vol 192-193 ◽  
pp. 95-100
Author(s):  
Tian Bao Li ◽  
Zhao Yang ◽  
Bing Li ◽  
Yu Long Ye

Hypo/hyper-eutectic Al-Si bi-metal composite parts were prepared by the strain-induced melt activated (SIMA) thixo-forging. The interfaces of the bi-metal composites were observed using OM, and SEM. The tensile strength and hardness of the matrix alloys and the bonding strength at the interface were assessed by tensile test and micro-indent test. Results show that the eutectic structure joined together on the interface under the pressure. However, there are some defects such as holes and impurities were found near the interface. The tensile test samples were broken in Al-20 wt. % Si matrix. The bonding strengths at the interfaces were higher than 80 MPa. Results show that the hardness gradually increasing from 55 HV in Al-7 wt. % Si alloy to 180 HV in Al-20 wt. % Si alloy, which demonstrate the composite interface transited smoothly. The composite interface has an average hardness of 80 HV.


Author(s):  
Darmono Darmono ◽  
Maris Setyo Nugroho ◽  
Slamet Widodo ◽  
Faqih Ma’arif

ABSTRAKPenelitian bertujuan untuk mengetahui mechanical properties material kayu Bangunan Cagar Budaya dengan non-destructive test. Penelitian ini menggunakan metode pengujian lansung dilapang menggunakan Ultrasonic Pulse Velocity (UPV). Terdapat dua variable yang digunakan yaitu kolom cacat dan kolom utuh untuk mengetahui perbedaan nilai cepat rambat gelombang. Jumlah sampel yang digunakan sebanyak enam buah dengan pengambilan data masing-masing sampel sebanyak lima kali. Hasil pengujian menunjukkan bahwa nilai kadar air dan berat jenis kayu sebesar 15,03% dan 0,62. Sedangkan hasil pengujian UPV pada kolom cacat dan utuh diperoleh cepat rambat gelombang sebesar 0,71 km/s dan 1,21 km/s. Berdasarkan hasil analisis menunjukkan bahwa nilai MOEd pada kolom utuh sebesar 9.374,37 MPa, sedangkan MOEd pada kolom cacat sebesar 3.240,62 MPa. Kata kunci: mechanical properties kayu, bangunan cagar budaya, ultrasonic pulse velocity ABSTRACTThis study aims to determine the mechanical properties of the wood material for the Cultural Heritage Building with a non-destructive test. This study used a direct field testing method using Ultrasonic Pulse Velocity (UPV). There are two variables used, namely the defective column and the solid column to determine the difference in the value of the fast propagation of the waves. The number of samples used was six with data collection for each sample five times. The test results showed that the moisture content and density of wood were 15.03% and 0.62. While the UPV test results on defective and solid columns obtained wave propagation velocity of 0.71 km / s and 1.21 km / s. Based on the analysis result, it shows that the MOEd value in the whole column is 9,374.37 MPa, while the MOEd in the defective column is 3,240.62 MPa. Keywords: mechanical properties of wood, cultural heritage buildings, ultrasonic pulse velocity


Sign in / Sign up

Export Citation Format

Share Document