scholarly journals Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

2016 ◽  
Vol 43 (8) ◽  
pp. 3935-3943 ◽  
Author(s):  
D. S. Trossman ◽  
J. B. Palter ◽  
T. M. Merlis ◽  
Y. Huang ◽  
Y. Xia
2012 ◽  
Vol 42 (2) ◽  
pp. 243-260 ◽  
Author(s):  
Rafail V. Abramov ◽  
Andrew J. Majda

Abstract Linear response to external perturbation through the fluctuation–dissipation theorem has recently become a popular topic in the climate research community. It relates an external perturbation of climate dynamics to climate change in a simple linear fashion, which provides key insight into physics of the climate change phenomenon. Recently, the authors developed a suite of linear response algorithms for low-frequency response of large-scale climate dynamics to external perturbation, including the novel blended response algorithm, which combines the geometrically exact general response formula using integration of a linear tangent model at short response times and the classical quasi-Gaussian response algorithm at longer response times, overcoming numerical instability of the tangent linear model for longer times due to positive Lyapunov exponents. Here, the authors apply the linear response framework to several leading empirical orthogonal functions (EOFs) of a quasigeostrophic model of wind-driven ocean circulation. It is demonstrated that the actual nonlinear response of this system under external perturbation at leading EOFs can be predicted by the linear response algorithms with adequate skill with moderate errors; in particular, the blended response algorithm has a pattern correlation with the ideal response operator on the four leading EOFs of the mean state response of 94% after 5 yr. In addition, interesting properties of the mean flow response to large-scale changes in wind stress at the leading EOFs are observed.


Author(s):  
Drew Shindell

I investigate the potential for sudden climate change during the current century. This investigation takes into account evidence from the Earth's history, from climate models and our understanding of the physical processes governing climate shifts. Sudden alterations to climate forcing seem to be improbable, with sudden changes instead most likely to arise from climate feedbacks. Based on projections from models validated against historical events, dramatic changes in ocean circulation appear unlikely. Ecosystem–climate feedbacks clearly have the potential to induce sudden change, but are relatively poorly understood at present. More probable sudden changes are large increases in the frequency of summer heatwaves and changes resulting from feedbacks involving hydrology. These include ice sheet decay, which may be set in motion this century. The most devastating consequences are likely to occur further in the future, however. Reductions in subtropical precipitation are likely to be the most severe hydrologic effects this century, with rapid changes due to the feedbacks of relatively well-understood large-scale circulation patterns. Water stress may become particularly acute in the Southwest US and Mexico, and in the Mediterranean and Middle East, where rainfall decreases of 10–25% (regionally) and up to 40% (locally) are projected.


2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Sign in / Sign up

Export Citation Format

Share Document