scholarly journals Progress Towards Perennial Grains for Prairies and Plains

2022 ◽  
pp. 003072702110731
Author(s):  
K.G. Cassman ◽  
D.J. Connor

Perennial grain crops have been proposed as environmentally sustainable alternatives to annual grain crop systems that currently dominate the world's major breadbaskets. Proponents emphasize the potential of perennial grains to mimic natural systems and thereby reduce soil erosion, nutrient losses, and degradation of soil quality although need for adequate grain yield is also recognized as a prerequisite for success. Here we assess progress since 2005 (16 y) towards development of perennial grain systems with sufficient productivity to be seen as competent alternatives to annual wheat on the prairies and plains of North America and Australia. Based on reports published in refereed journals, we see little evidence that yield of Intermediate Wheatgrass or perennial wheats have improved to the point they are viable alternatives. Slow progress is attributed to lack of minimum grain yield targets for economic viability, lack of designated target regions where perennial grains are most likely to be competitive against annuals, selection methods that focused on components of yield rather than yield per se (i.e. on an area basis), and relatively small R & D investment compared to resources given to genetic and agronomic improvement of major annual grain crops. Given current status, we conclude that perennial grains will require substantial R & D investment and several decades if they are to achieve sufficient yield potential and yield persistence to become more than a niche crop for upscale health food markets in wealthy countries.

2018 ◽  
Vol 55 (2) ◽  
pp. 251-272 ◽  
Author(s):  
SIEGLINDE SNAPP ◽  
PAUL ROGÉ ◽  
PATRICK OKORI ◽  
REGIS CHIKOWO ◽  
BRAD PETER ◽  
...  

SUMMARYPerennial grain crops have been proposed as a transformative approach to agriculture. Replacing annual staple crops with perennialized growth types of the same crops could provide environmental services, improve labour efficiency and weather resilience, reduce seed costs and produce livestock fodder or fuelwood production. Yet, the technologies and science for agricultural development in Africa have focused almost exclusively on annuals. In this paper, we review the literature to explore what has been potentially overlooked, including missed opportunities as well as the disadvantages associated with perennial grains. The case studies of pigeon pea and sorghum are considered, as an analogue for perennial grain crops in Africa. We find that a substantial number of farmers persist in ‘perennializing’ pigeon pea systems through ratoon management, and that sorghum ratoons are widely practiced in some regions. In contrast, many crop scientists are not interested in perennial traits or ratoon management, citing the potential of perennials to harbour disease, and modest yield potential. Indeed, an overriding prioritization of high grain yield response to fertilizer, and not including accessory products such as fodder or soil fertility, has led to multipurpose, perennial life forms being overlooked. Agronomists are encouraged to consider a wide range of indicators of performance for a sustainable approach to agriculture, one that includes management for diversity in crop growth habits.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


2013 ◽  
Vol 93 (6) ◽  
pp. 1265-1270 ◽  
Author(s):  
C. J. Pozniak

Pozniak, C. J. 2013. CDC Desire durum wheat. Can. J. Plant Sci. 93: 1265–1270. CDC Desire durum wheat is adapted to the durum production area of the Canadian prairies. This conventional height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations and low grain cadmium. CDC Desire is strong-strawed and is earlier maturing than all check cultivars. CDC Desire expresses disease resistance similar to the current check cultivars.


2015 ◽  
Vol 95 (5) ◽  
pp. 1007-1012 ◽  
Author(s):  
C. J. Pozniak ◽  
J. M. Clarke

Pozniak, C. J. and Clarke, J. M. 2015. CDC Carbide durum wheat. Can. J. Plant Sci. 95: 1007–1012. CDC Carbide durum wheat is adapted to the durum production area of the Canadian prairies. This conventional-height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations, and low grain cadmium. CDC Carbide carries the Sm1 gene conferring resistance to the Orange Wheat Blossom Midge [Sitodiplosis modellana (Gehin)]. CDC Carbide is resistant to prevalent races of leaf, stem and stripe rust, and common bunt, and expresses end-use quality suitable for the Canada Western Amber Durum class.


Author(s):  
Roop Kamal ◽  
Quddoos H Muqaddasi ◽  
Yusheng Zhao ◽  
Thorsten Schnurbusch

Abstract The potential to increase barley grain yield lies in the indeterminate nature of its inflorescence meristem (IM). The IM produces spikelets, the basic reproductive unit in grasses, which are linked to reproductive success. During early reproductive growth, barley spikes pass through the maximum yield potential—a stage after which no new spikelet ridges are produced. Subsequently, spikelet abortion (SA), a phenomenon in which spikelets abort during spike growth, imposes a bottleneck on increasing the grain yield potential. Here, we studied the potential of main culm spikes by counting potential spikelet number (PSN), final spikelet number (FSN) and computed the corresponding SA (%) in a panel of 417 six-rowed spring barleys. Our phenotypic data analyses showed a significantly large within- and across-years genotypic variation with high broad-sense heritability estimates for all the investigated traits, including SA. Asian accessions displayed the lowest SA indicating the presence of favorable alleles that may be exploited in breeding programs. A significantly negative Pearson’s product-moment correlation was observed between FSN and SA. Our path analysis revealed that PSN and FSN explain 93% of the observed phenotypic variability for SA with PSN behaving as a suppressor trait magnifying the effect. Based on a large set of diverse barley accessions, our results provide a deeper phenotypic understanding of the quantitative genetic nature of SA, its association with traits of high agronomic importance, and a resource for further genetic analyses.


2005 ◽  
Vol 62 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Giovani Benin ◽  
Fernando Irajá Félix de Carvalho ◽  
Antônio Costa de Oliveira ◽  
Claudir Lorencetti ◽  
Igor Pires Valério ◽  
...  

Several studies have searched for higher efficiency on plant selection in generations bearing high frequency of heterozygotes. This work aims to compare the response of direct selection for grain yield, indirect selection through average grain weight and combined selection for higher yield potential and average grain weight of oat plants (Avena sativa L.), using the honeycomb breeding method. These strategies were applied in the growing seasons of 2001 and 2002 in F3 and F4 populations, respectively, in the crosses UPF 18 CTC 5, OR 2 <FONT FACE=Symbol>´</FONT> UPF 7 and OR 2 <FONT FACE=Symbol>´</FONT> UPF 18. The ten best genetic combinations obtained for each cross and selection strategy were evaluated in greenhouse yield trials. Selection of plants with higher yield and average grain weight might be performed on early generations with high levels of heterozygosis. The direct selection for grain yield and indirect selection for average grain weight enabled to increase the average of characters under selection. However, genotypes obtained through direct selection presented lower average grain weight and those obtained through the indirect selection presented lower yield potential. Selection strategies must be run simultaneously to combine in only one genotype high yield potential and large grain weight, enabling maximum genetic gain for both characters.


Author(s):  
Shruti Mohapatra ◽  
Raj Kishore Mishra ◽  
Khitish K. Sarangi

Environmentally sustainable energy sources are called for due to contemporaneous development in industries along with the rapid pace of urbanization. Ethanol produced from biomass can be deliberated as a clean and safest liquid fuel and an alternative to fossil fuels as they have provided unique environmental, strategic economic benefits. For the past decade, it has been noticed that there is an increasing trend found in bio ethanol production which has created a stimulus to go for advancement in bio ethanol production technologies. Several feed stocks have been used for the bio ethanol production but the second generation bio ethanol has concentrated on the lignocellulosic biomass. Plenteous lignocellulosic biomass in the world can be tapped for ethanol production, but it will require significant advances in the ethanol production process from lignocellulosic because of some technical and economic hurdles found in commercial scale. This review will encompass the current status of bio ethanol production in terms of their economic and environmental viability along with some research gaps as well as policy implications for the same.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1646
Author(s):  
Hafiz Ghulam Muhu-Din Ahmed ◽  
Muhammad Nouman Iqbal ◽  
Muhammad Arslan Iqbal ◽  
Yawen Zeng ◽  
Aziz Ullah ◽  
...  

Genome-wide association study (GWAS) was performed for stomata- and yield-related attributes with high-density Illumina 90 K Infinium SNP (single nucleotide polymorphism) array in bread wheat to determine genetic potential of germplasm for scarce water resources with sustainable yield potential. Major yield and stomata attributes were phenotyped on a panel of Pakistani and foreign accessions grown in non-stressed and water shortage environments during two seasons. Highly significant variations were shown among accessions in both conditions for examined characteristics. Water shortage conditions reduced the overall wheat yield and strong positive correlation existed among stomatal frequency, leaf venation and grain yield per plant. Population structure analyses based on 90,000 SNP data classified the accessions into four sub-populations which indicated the presence of genetic variability. Marker-trait association (MTA) analyses revealed that 422 significant SNPs at p ≤ 10−3, after crossing the false discovery rate (FDR) <0.05 threshold, were linked with examined attributes. Pleiotropic loci (wsnp_Ex_c8913_14881924 and Tdurum_contig10598_304) were associated with flag leaf area (FLA), stomata size (SS), stomata frequency (SF), leaf venation (LV), number of grain per spike (NGS) and grain yield per plant (GYP), which were located on chromosome 4B and 6B at the positions 173.63cM and 229.64cM, respectively, under water shortage conditions. Pleotropic loci wsnp_Ex_c24167_33416760, wsnp_Ex_c5412_9564046 and Tdurum_contig81797_369 on chromosomes 7A, 2A and 4B at the positions 148.26cM, 261.05cM and 173.63cM, respectively, were significantly linked with stomata and yield indices such as FLA, SS, SF, LV, NGS and GYP under normal and water shortage conditions. The current experiment not only validated several MTAs for studied indices reported in other studies but also discovered novel MTAs significant under water shortage environments. Associated and significant SNPs will be useful in discovering novel genes underpinning water shortage tolerance in bread wheat for producing high-yielding and drought tolerant wheat varieties to fulfill the wheat demand for growing populations.


2021 ◽  
Vol 13 (2) ◽  
pp. 78
Author(s):  
L. Musundire ◽  
J. Derera ◽  
S. Dari ◽  
A. Lagat ◽  
P. Tongoona

Grain yield potential of new maize hybrid varieties across target environments contributes to the uptake of these varieties by farmers. Evaluation of single-cross hybrids developed from test crossing introgressed inbred lines bred for three distinct environments to elite tropical inbred line testers was carried out. The study&rsquo;s objective was to assess grain yield stability and genotype adaptability of the single-cross hybrids across South African environments relative to adapted commercial hybrid checks. One hundred and twenty-two introgressed inbred lines developed using the pedigree breeding program were crossed to four tropical elite inbred line testers using line &times; tester mating design to obtain 488 experimental single cross hybrids. Subject to availability of adequate seed for evaluation, a panel of 444 experimental single-cross hybrids was evaluated using an augmented design in two experiments defined as Population A and B for the study&rsquo;s convenience in South African environments. Data for grain yield (t/ha) performance for experimental single-cross hybrids and commercial check hybrids in Population A and B across environments and individual environments identified experimental single-cross hybrids that had significant comparable grain yield (t/ha) performance relative to best commercial check hybrid (PAN6Q445B) on the market. The selected experimental single-cross hybrids 225, 89, 246 and 43 (Population A) and 112 (Population B) also had a better average rank position for grain yield (t/ha) relative to best commercial check hybrid. These selected experimental single-cross hybrids had a grain yield (t/ha) advantage range of 0.9-6.7% for Population A and 7.3% for Population A and B, respectively, relative to the adapted commercial check hybrid. GGE biplot patterns for which won-where for Population A indicated that at Potchefstroom Research Station and Ukulinga Research Station experimental single-cross hybrids 127 and135 were the vertex (winning) hybrids. Cedera Research Station did not have a vertex hybrid for Population A. For Population B, experimental single-cross hybrids 112, 117 and 18 were the vertex hybrids at Cedera Research Station, Ukulinga Research Station and Potchefstroom Research Station, respectively. Experimental single-cross hybrid 257 was identified as ideal genotype for Population A, while experimental single-cross hybrid 121 in Population B was the ideal genotype. Ideal environments were also identified as Ukulinga Research Station for Population A, and Cedera Research Station for Population B. Average-environment coordination (AEC) view of the GGE biplot in Population A indicated that experimental single-cross hybrids 1 was highly stable across environments. In comparison, Population B experimental single-cross hybrid 161 was highly stable across environments. In conclusion, selected single-cross hybrids in the current study can also be advanced for further evaluation with a possibility for identifying high yielding and stable single-cross hybrids for variety registration and release in target environments in South Africa.


2006 ◽  
Vol 98 (6) ◽  
pp. 1488-1494 ◽  
Author(s):  
R. K. Teal ◽  
B. Tubana ◽  
K. Girma ◽  
K. W. Freeman ◽  
D. B. Arnall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document