cell surface grp78
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jihoon Shin ◽  
Shinichiro Toyoda ◽  
Shigeki Nishitani ◽  
Atsunori Fukuhara ◽  
Shunbun Kita ◽  
...  

Aging, obesity and diabetes are major risk factors for the severe progression and outcome of SARS-CoV-2 infection (COVID-19), but the underlying mechanism is not yet fully understood. In this study, we found that the SARS-CoV-2 spike protein physically interacts with cell surface GRP78, which promotes the binding to and accumulation in ACE2-expressing cells. GRP78 was highly expressed in adipose tissue and increased in older and obese diabetic human and mouse subjects. The overexpression of GRP78 was attributed to hyperinsulinemia in adipocytes, which was in part mediated by the stress-responsive transcription factor XBP-1s. Management of hyperinsulinemia by pharmacological approaches, including metformin, SGLT2 inhibitor or β3-adrenergic receptor agonist, decreased GRP78 gene expression in adipose tissue. Environmental interventions, including exercise, calorie restriction, fasting or cold exposure, reduced the gene expression of GRP78 in adipose tissue. This study provides scientific evidence for the role of GRP78 as a binding partner of the SARS-CoV-2 spike protein and ACE2, which might be related to the severe progression and outcome of COVID-19 in older and obese diabetic patients. The management of hyperinsulinemia and the related GRP78 expression could be a potential therapeutic or preventative target.<br>


2021 ◽  
Author(s):  
Jihoon Shin ◽  
Shinichiro Toyoda ◽  
Shigeki Nishitani ◽  
Atsunori Fukuhara ◽  
Shunbun Kita ◽  
...  

Aging, obesity and diabetes are major risk factors for the severe progression and outcome of SARS-CoV-2 infection (COVID-19), but the underlying mechanism is not yet fully understood. In this study, we found that the SARS-CoV-2 spike protein physically interacts with cell surface GRP78, which promotes the binding to and accumulation in ACE2-expressing cells. GRP78 was highly expressed in adipose tissue and increased in older and obese diabetic human and mouse subjects. The overexpression of GRP78 was attributed to hyperinsulinemia in adipocytes, which was in part mediated by the stress-responsive transcription factor XBP-1s. Management of hyperinsulinemia by pharmacological approaches, including metformin, SGLT2 inhibitor or β3-adrenergic receptor agonist, decreased GRP78 gene expression in adipose tissue. Environmental interventions, including exercise, calorie restriction, fasting or cold exposure, reduced the gene expression of GRP78 in adipose tissue. This study provides scientific evidence for the role of GRP78 as a binding partner of the SARS-CoV-2 spike protein and ACE2, which might be related to the severe progression and outcome of COVID-19 in older and obese diabetic patients. The management of hyperinsulinemia and the related GRP78 expression could be a potential therapeutic or preventative target.<br>


2021 ◽  
Vol 22 (6) ◽  
pp. 2839
Author(s):  
Asfia Soomro ◽  
Jackie Trink ◽  
Kian O’Neil ◽  
Renzhong Li ◽  
Safaa Naiel ◽  
...  

Diabetic kidney disease (DKD) is the leading cause of kidney failure. RhoA/Rho-associated protein kinase (ROCK) signaling is a recognized mediator of its pathogenesis, largely through mediating the profibrotic response. While RhoA activation is not feasible due to the central role it plays in normal physiology, ROCK inhibition has been found to be effective in attenuating DKD in preclinical models. However, this has not been evaluated in clinical studies as of yet. Alternate means of inhibiting RhoA/ROCK signaling involve the identification of disease-specific activators. This report presents evidence showing the activation of RhoA/ROCK signaling both in vitro in glomerular mesangial cells and in vivo in diabetic kidneys by two recently described novel pathogenic mediators of fibrosis in DKD, activins and cell-surface GRP78. Neither are present in normal kidneys. Activin inhibition with follistatin and neutralization of cell-surface GRP78 using a specific antibody blocked RhoA activation in mesangial cells and in diabetic kidneys. These data identify two novel RhoA/ROCK activators in diabetic kidneys that can be evaluated for their efficacy in inhibiting the progression of DKD.


Author(s):  
Zihang Chen ◽  
Huizhi Wang ◽  
Zongpu Zhang ◽  
Jianye Xu ◽  
Yanhua Qi ◽  
...  

Abstract Background Glioma stem cells (GSCs) are considered the initial cells of gliomas, contributing to therapeutic resistance. Patient-derived GSCs well recapitulate the heterogeneity of their parent glioma tissues, which can be classified into different subtypes. Likewise, previous works identified GSCs as two distinct subtypes, mesenchymal (MES) and proneural (PN) subtypes, and with general recognition, the MES subtype is considered a more malignant phenotype characterized by high invasion and radioresistance. Therefore, understanding the mechanisms involved in the MES phenotype is necessary for glioblastoma treatment. Methods Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) database. An antibody was used to block cell surface glucose-regulated protein 78 (csGRP78). Apoptosis and cell cycle analyses were performed to evaluate radiation damage. Immunofluorescence staining was applied to assess protein expression and distribution. Mass spectrometry combined with bioinformatic analysis was used to screen downstream molecules. Intracranial GSC-derived xenografts were established for in vivo experiments. Results Total GRP78 expression was associated with MES GSC stemness, and csGRP78 was highly expressed in MES GSCs. Targeting csGRP78 suppressed the self-renewal and radioresistance of MES GSCs in vitro and in vivo, accompanied by downregulation of the STAT3, NF-κB and C/EBPβ pathways. Mass spectrometry revealed the potential downstream β-site APP-cleaving enzyme 2 (BACE2), which was regulated by csGRP78 via lysosomal degradation. Knockdown of BACE2 inactivated NF-κB and C/EBPβ and significantly suppressed the tumorigenesis and radioresistance of MES GSCs in vitro and in vivo. Conclusions Cell surface GRP78 was preferentially expressed in MES GSCs and played a pivotal role in MES phenotype maintenance. Thus, blocking csGRP78 in MES GSCs with a high-specificity antibody might be a promising novel therapeutic strategy.


2020 ◽  
Vol 328 ◽  
pp. 932-941
Author(s):  
Masoud Farshbaf ◽  
Ahmad Yari Khosroushahi ◽  
Solmaz Mojarad-Jabali ◽  
Amir Zarebkohan ◽  
Hadi Valizadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document