episomal vectors
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 43 (3) ◽  
pp. 2289-2304
Author(s):  
Wei Xia ◽  
Mengkai Hu ◽  
Yang Pan ◽  
Dan Wu ◽  
Jing Wu

Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL−1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.


2021 ◽  
Author(s):  
Grace E Mulia ◽  
Virginia Picanço-Castro ◽  
Eleana F. Stavrou ◽  
Aglaia - Athanassiadou ◽  
Marxa L Figueiredo

2021 ◽  
Vol 13 (597) ◽  
pp. eabg3047
Author(s):  
Anne Vonada ◽  
Amita Tiyaboonchai ◽  
Sean Nygaard ◽  
Jeffrey Posey ◽  
Alexander Mack Peters ◽  
...  

Gene therapy by integrating vectors is promising for monogenic liver diseases, especially in children where episomal vectors remain transient. However, reaching the therapeutic threshold with genome-integrating vectors is challenging. Therefore, we developed a method to expand hepatocytes bearing therapeutic transgenes. The common fever medicine acetaminophen becomes hepatotoxic via cytochrome p450 metabolism. Lentiviral vectors with transgenes linked in cis to a Cypor shRNA were administered to neonatal mice. Hepatocytes lacking the essential cofactor of Cyp enzymes, NADPH-cytochrome p450 reductase (Cypor), were selected in vivo by acetaminophen administration, replacing up to 50% of the hepatic mass. Acetaminophen treatment of the mice resulted in over 30-fold expansion of transgene-bearing hepatocytes and achieved therapeutic thresholds in hemophilia B and phenylketonuria. We conclude that therapeutically modified hepatocytes can be selected safely and efficiently in preclinical models with a transient regimen of moderately hepatotoxic acetaminophen.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Aisha Mohamed ◽  
Theresa Chow ◽  
Jennifer Whiteley ◽  
Amanda Fantin ◽  
Kersti Sorra ◽  
...  

The clinical application of induced pluripotent stem cells (iPSC) needs to balance the use of an autologous source that would be a perfect match for the patient against any safety or efficacy issues that might arise with using cells from an older patient or donor. Drs. Takahashi and Yamanaka and the Office of Cellular and Tissue-based Products (PMDA), Japan, have had concerns over the existence of accumulated DNA mutations in the cells of older donors and the possibility of long-term negative effects. To mitigate the risk, they have chosen to partner with the Umbilical Cord (UC) banks in Japan to source allogeneic-matched donor cells. Production of iPSCs from UC blood cells (UCB) has been successful; however, reprogramming blood cells requires cell enrichment with columns or flow cytometry and specialized growth media. These requirements add to the cost of production and increase the manipulation of the cells, which complicates the regulatory approval process. Alternatively, umbilical cord tissue mesenchymal stromal cells (CT-MSCs) have the same advantage as UCB cells of being a source of young donor cells. Crucially, CT-MSCs are easier and less expensive to harvest and grow compared to UCB cells. Here, we demonstrate that CT-MSCs can be easily isolated without expensive enzymatic treatment or columns and reprogramed well using episomal vectors, which allow for the removal of the reprogramming factors after a few passages. Together the data indicates that CT-MSCs are a viable source of donor cells for the production of clinical-grade, patient matched iPSCs.


2020 ◽  
Vol 8 (4) ◽  
pp. 526 ◽  
Author(s):  
Zool Hilmi Ibrahim ◽  
Jung-Hoon Bae ◽  
Sun-Hee Lee ◽  
Bong Hyun Sung ◽  
Ahmad Hazri Ab Rashid ◽  
...  

A lipolytic yeast Candida aaseri SH14 that can utilise long-chain fatty acids as the sole carbon source was isolated from oil palm compost. To develop this strain as a platform yeast for the production of bio-based chemicals from renewable plant oils, a genetic manipulation system using CRISPR-Cas9 was developed. Episomal vectors for expression of Cas9 and sgRNA were constructed using an autonomously replicating sequence isolated from C. aaseri SH14. This system guaranteed temporal expression of Cas9 for genetic manipulation and rapid curing of the vector from transformed strains. A β-oxidation mutant was directly constructed by simultaneous disruption of six copies of acyl-CoA oxidases genes (AOX2, AOX4 and AOX5) in diploid cells using a single sgRNA with 70% efficiency and the Cas9 vector was efficiently removed. Blocking of β-oxidation in the triple AOX mutant was confirmed by the accumulation of dodecanedioic acid from dodecane. Targeted integration of the expression cassette for C. aaseri lipase2 was demonstrated with 60% efficiency using this CRISPR-Cas9 system. This genome engineering tool could accelerate industrial application of C. aaseri SH14 for production of bio-based chemicals from renewable oils.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eleana F. Stavrou ◽  
Emannuouil Simantirakis ◽  
Meletios Verras ◽  
Carlos Barbas ◽  
George Vassilopoulos ◽  
...  

AbstractWe report the development of episomal vectors for the specific γ-globin transcription activation in its native position by activator Zif-VP64, based on the Scaffold/Matrix Attachment Region (S/MAR) for episomal retention and the β-globin Replicator, the DNA replication-Initiation Region from the β-globin locus. Vector Zif-VP64-Ep1 containing transcription cassettes CMV- Zif-VP64 and CMV-eGFP-S/MAR transfected a)K562 cells; b)murine β-YAC bone marrow cells (BMC); c)human haematopoietic progenitor CD34+ cells, with transfection efficiencies of 46.3 ± 5.2%, 23.0 ± 2.1% and 24.2 ± 2.4% respectively. K562 transfections generated stable cell lines running for 28 weeks with and without selection, with increased levels of γ-globin mRNA by 3.3 ± 0.13, of γ-globin protein by 6.75 ± 3.25 and HbF protein by 2 ± 0.2 fold, while the vector remained episomal and non integrated. In murine β-YAC BMCs the vector mediated the activation of the silent human γ-globin gene and in CD34+ cells, increased γ-globin mRNA, albeit only transiently. A second vector Zif-VP64-Ep2, with both transcription cassettes carrying promoter SFFV instead of CMV and the addition of β-globin Replicator, transferred into CD34+ cells, produced CD34+ eGFP+ cells, that generated colonies in colony forming cell cultures. Importantly, these were 100% fluorescent, with 2.11 ± 0.13 fold increased γ-globin mRNA, compared to non-transfected cells. We consider these episomal vectors valid, safer alternatives to viral vectors.


Sign in / Sign up

Export Citation Format

Share Document