longitudinal ultrasonic wave
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1634
Author(s):  
Marcin Górny ◽  
Magdalena Kawalec ◽  
Beata Gracz ◽  
Mirosław Tupaj

The present study highlights the effect of the cooling rate on the microstructure formation of Si–Mo ductile iron. In this study, experiments were carried out for castings with different wall thicknesses (i.e., 3, 5, 13, and 25 mm) to achieve various cooling rates. The simulation of the cooling and solidification was performed through MAGMASOFT to correlate the cooling conditions with the microstructure. The phase diagram of the investigated alloy was calculated using Thermo-Calc, whereas the quantitative metallography analyses using scanning electron microscopy and optical microscopy were performed to describe the graphite nodules and metallic matrix morphologies. The present study provides insights into the effect of the cooling rate on the graphite nodule count, nodularity, and volumetric fractions of graphite and ferrite as well as the average ferritic grain size of thin-walled and reference Si–Mo ductile iron castings. The study shows that the cooling rates of castings vary within a wide range (27 °C–1.5 °C/s) when considering wall thicknesses of 3 to 25 mm. The results also suggest that the occurrence of pearlite and carbides are related to segregations during solidification rather than to cooling rates at the eutectoid temperature. Finally, the present study shows that the longitudinal ultrasonic wave velocity is in linear dependence with the number of graphite nodules of EN-GJS-SiMo45-6 ductile iron.


Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 42
Author(s):  
Beata Figarska-Warchoł ◽  
Marek Rembiś

The sandstones with a laminated structure are common building materials. Lamination is macroscopically expressed as colour and grain size variations observed both in the deposit and within individual beds; therefore, the properties of such sandstones are diverse depending on the spatial distribution of the binding mass and framework components. For the terrestrial sandstones of different genesis, four types of laminae have been distinguished based on petrographic studies. They have a siliceous binder or a mixed ferruginous–siliceous–argillaceous binder with different proportions of these components. In laminae of types I–III, the grain framework is built mainly of quartz grains, and in type IV, it is accompanied by numerous lithoclasts and feldspars. Knoop hardness and CERCHAR abrasivity were tested in each lamina variety, and the results were correlated with the equivalent quartz content and the longitudinal ultrasonic wave velocity measured perpendicular and parallel to the lamination. The proposed research methodology was not used in previous studies on terrestrial laminated sandstones. The results explain a strong dependence between mineral composition, structure of laminae, and technical parameters of rocks. The knowledge of this relationship facilitates the selection of rocks that meet the relevant technical requirements and helps to optimally manage the resources of sandstone deposits.


2020 ◽  
pp. 37-47
Author(s):  
М.А. Далин ◽  
В.Ю. Чертищев ◽  
И.С. Краснов ◽  
А.Н. Раевских

An ultrasonic non-destructive testing has found out a new phenomenon in several stamped forgings made from heat-resistant nickel alloys (Ni-superalloys) of two grades: local attenuation of the bottom echo signal amplitude, when the workpiece surface had large (over 20 mm) randomly located zones with significant (up to 1.5%) fluctuations of the longitudinal ultrasonic wave propagation velocity. On top of that, there were no various grain sizes or coarse-grained structures that usually lead to a an increase of a rate of ultrasonic attenuation in such alloys, and which triggers off a bottom echo signal amplitude attenuation. The Article states the studies carried out to explain the tangible reasons of the detected macroinhomogeneity of the velocity, and how it associated with a bottom signal amplitude attenuation.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2162 ◽  
Author(s):  
Jarosław Michałek

Is the variation in the compressive strength of concrete across the thickness of horizontally cast elements negligibly small or rather needs to be taken into account at the design stage? There are conflicting answers to this question. In order to determine if the compressive strength of concrete varies across the thickness of horizontally cast elements, ultrasonic tests and destructive tests were carried out on core samples taken from a 350 mm thick slab made of class C25/30 concrete. Special point-contact probes were used to measure the time taken for the longitudinal ultrasonic wave to pass through the tested sample. The correlation between the velocity of the longitudinal ultrasonic wave and the compressive strength of the concrete in the slab was determined. The structure of the concrete across the thickness of the slab was evaluated using GIMP 2.10.4. It was found that the destructively determined compressive strength varied only slightly (by 3%) across the thickness of the placed layer of concrete. Whereas the averaged ultrasonically determined strength of the concrete in the same samples does not vary across the thickness of the analyzed slab. Therefore, it was concluded that the slight increase in concrete compressive strength with depth below the top surface is a natural thing and need not be taken into account in the assessment of the strength of concrete in the structure.


2017 ◽  
Vol 31 (31) ◽  
pp. 1750250 ◽  
Author(s):  
Danica Krstovska

A linear thermoelectric generation of a longitudinal ultrasonic wave in organic conductors with two conducting channels, quasi-one dimensional (q1D) and quasi-two dimensional (q2D), is investigated theoretically. The magnetic field and temperature dependences of the amplitude of generated through Nernst effect wave in [Formula: see text]-(BEDT-TTF)2KHg(SCN)4 for two boundary conditions, isothermal and adiabatic are obtained. Findings show a preference of one type of a boundary over another in the wave generation and propagation depending on the magnetic field strength and temperature. At lower temperatures and above B[Formula: see text]=[Formula: see text]4 T, the wave amplitude for adiabatic boundary is smaller compared to the one for isothermal boundary although there is a heat flux through the conductor’s surface in the latter. Both the q1D and q2D charge carriers contribute to the observation of the effect but with different magnitude due to the different drift velocity along the direction of wave propagation.


2014 ◽  
Vol 912-914 ◽  
pp. 141-144
Author(s):  
Hsin Chung Cheng ◽  
Chiung Fang Huang ◽  
Yi Lin ◽  
Yung Kang Shen

This study indicates the micropattern of molded plastic film from a mold insert using ultrasonic micro embossing. A mold insert and plastic film are heated above the glass transition temperature of plastic, and the softened plastic is flowed into the micropattern of a mold insert by applying pressure via a conventional technique. A longitudinal ultrasonic wave is added to the ultrasonic micro embossing process. The longitudinal ultrasonic wave generated by an ultrasonic system at a frequency of 35 KHz, has amplitude of 20 μm and output power of 900 W. The micropatterns of the Ni mold insert are groove-shaped and they are 2-μm wide and 200-nm deep. The Polypropylene (PP) is chosen as the replication materials. This study identifies the replication properties of the plastic film using different process parameters (working pressure, ultrasonic pressure, packing pressure, working time, ultrasonic time and packing time). Results of this study demonstrate that ultrasonic time is the most important process parameter for ultrasonic micro embossing.


2013 ◽  
Vol 860-863 ◽  
pp. 2161-2167
Author(s):  
Wei Qiang Qi ◽  
Yan Ran Li ◽  
Xiao Xin Chen ◽  
Da Peng Duan

Longitudinal ultrasonic wave signals, transverse ultrasonic wave signals and other ultrasonic body wave signals generated by partial discharge are analyzed emphatically in the acoustic emission method of partial discharge detection in high voltage equipment [1-. Velocity of longitudinal ultrasonic wave is often used to calculate partial discharge defects position in the location study of partial discharge. In practical applications errors are always large. And a recent study finds that a class of plate ultrasonic guided waves will be inspired when ultrasonic body waves are transmitted from the gaseous medium to the metal medium [9-1. As the attenuation coefficient is small and the transmission distance is large when the waves propagate along the metal plate, in the partial discharge detection, ultrasonic signals detected by the ultrasonic sensor attached to the equipment enclosure include ultrasonic guided waves besides the ultrasonic body waves.


2011 ◽  
Vol 45 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Siegfried Matthies

The recently developed GEO-MIX-SELF approximation (GMS) is applied to interpret the pressure dependence of the longitudinal ultrasonic wave velocities in a polycrystalline graphite sample that has already been investigated in a wide range of experimental contexts. Graphite single crystals have extremely anisotropic elastic properties, making this sample a challenging test to demonstrate the potential of the GMS method. GMS combines elements of well known self-consistent algorithms and of the geometric mean approximation. It is able to consider mixtures of different polycrystalline phases, each with its own nonspherical grain shape and preferred orientation (texture). Pores and `cracks', typical for bulk graphite, are modeled as phases with `empty' grains. The pressure dependence (up to 150 MPa) of the experimental wave velocities can be well explained using the known texture of the sample by fitting the shape parameters and volume fractions of the graphite grains, cracks and spherical pores. The pressure dependence of these parameters describes a reasonable scenario for the closing of the cracks and pores with increasing pressure.


Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Zbigniew Tylczyński

AbstractIn the lithium-caesium sulphate crystal in the temperature range of ferroelastic phase transition, the uniaxial stress σ X induced changes in velocity and attenuation of the longitudinal ultrasonic wave propagating in the direction [010] are studied. The phase transition is close to the three-critical point and the critical exponent is κ = 0.27 ± 0.02. The stress applied drastically decreases the stepwise change in the wave velocity at T C up to its disappearance at 2 MPa. In the temperature range between T C and T C − 6 K, the stress leads to an increase in the wave velocity and a decrease in its attenuation. This range was interpreted as that of co-existence of ferroelastic and incommensurate ordering, in which the stress influences the density of solitons leading to stiffening of the crystal lattice.


Sign in / Sign up

Export Citation Format

Share Document