scholarly journals Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the “War on Cancer”

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Julie Heng ◽  
Henry H. Heng

The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1162 ◽  
Author(s):  
Christine J. Ye ◽  
Zachary Sharpe ◽  
Henry H. Heng

When discussing chromosomal instability, most of the literature focuses on the characterization of individual molecular mechanisms. These studies search for genomic and environmental causes and consequences of chromosomal instability in cancer, aiming to identify key triggering factors useful to control chromosomal instability and apply this knowledge in the clinic. Since cancer is a phenomenon of new system emergence from normal tissue driven by somatic evolution, such studies should be done in the context of new genome system emergence during evolution. In this perspective, both the origin and key outcome of chromosomal instability are examined using the genome theory of cancer evolution. Specifically, chromosomal instability was linked to a spectrum of genomic and non-genomic variants, from epigenetic alterations to drastic genome chaos. These highly diverse factors were then unified by the evolutionary mechanism of cancer. Following identification of the hidden link between cellular adaptation (positive and essential) and its trade-off (unavoidable and negative) of chromosomal instability, why chromosomal instability is the main player in the macro-cellular evolution of cancer is briefly discussed. Finally, new research directions are suggested, including searching for a common mechanism of evolutionary phase transition, establishing chromosomal instability as an evolutionary biomarker, validating the new two-phase evolutionary model of cancer, and applying such a model to improve clinical outcomes and to understand the genome-defined mechanism of organismal evolution.


2019 ◽  
Vol 29 (Suppl 2) ◽  
pp. s12-s15
Author(s):  
Anirban K Mitra ◽  
Yang Yang-Hartwich

The 12th Biennial Ovarian Cancer Research Symposium organized by the Rivkin Center for Ovarian Cancer and the American Association for Cancer Research held on September 13–15, 2018 covered cutting edge and relevant research topics in ovarian cancer biology and therapy. Sessions included detection and prevention, genomics and molecular mechanisms, tumor microenvironment and immunology, novel therapeutics, and an education session. In this article we provide an overview of the key findings presented in the tumor microenvironment and immunology session.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 366 ◽  
Author(s):  
Christine J. Ye ◽  
Zachary Sharpe ◽  
Sarah Alemara ◽  
Stephanie Mackenzie ◽  
Guo Liu ◽  
...  

Micronuclei research has regained its popularity due to the realization that genome chaos, a rapid and massive genome re-organization under stress, represents a major common mechanism for punctuated cancer evolution. The molecular link between micronuclei and chromothripsis (one subtype of genome chaos which has a selection advantage due to the limited local scales of chromosome re-organization), has recently become a hot topic, especially since the link between micronuclei and immune activation has been identified. Many diverse molecular mechanisms have been illustrated to explain the causative relationship between micronuclei and genome chaos. However, the newly revealed complexity also causes confusion regarding the common mechanisms of micronuclei and their impact on genomic systems. To make sense of these diverse and even conflicting observations, the genome theory is applied in order to explain a stress mediated common mechanism of the generation of micronuclei and their contribution to somatic evolution by altering the original set of information and system inheritance in which cellular selection functions. To achieve this goal, a history and a current new trend of micronuclei research is briefly reviewed, followed by a review of arising key issues essential in advancing the field, including the re-classification of micronuclei and how to unify diverse molecular characterizations. The mechanistic understanding of micronuclei and their biological function is re-examined based on the genome theory. Specifically, such analyses propose that micronuclei represent an effective way in changing the system inheritance by altering the coding of chromosomes, which belongs to the common evolutionary mechanism of cellular adaptation and its trade-off. Further studies of the role of micronuclei in disease need to be focused on the behavior of the adaptive system rather than specific molecular mechanisms that generate micronuclei. This new model can clarify issues important to stress induced micronuclei and genome instability, the formation and maintenance of genomic information, and cellular evolution essential in many common and complex diseases such as cancer.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Han Fan ◽  
Utkan Demirci ◽  
Pu Chen

AbstractCancer heterogeneity is regarded as the main reason for the failure of conventional cancer therapy. The ability to reconstruct intra- and interpatient heterogeneity in cancer models is crucial for understanding cancer biology as well as for developing personalized anti-cancer therapy. Cancer organoids represent an emerging approach for creating patient-derived in vitro cancer models that closely recapitulate the pathophysiological features of natural tumorigenesis and metastasis. Meanwhile, cancer organoids have recently been utilized in the discovery of personalized anti-cancer therapy and prognostic biomarkers. Further, the synergistic combination of cancer organoids with organ-on-a-chip and 3D bioprinting presents a new avenue in the development of more sophisticated and optimized model systems to recapitulate complex cancer-stroma or multiorgan metastasis. Here, we summarize the recent advances in cancer organoids from a perspective of the in vitro emulation of natural cancer evolution and the applications in personalized cancer theranostics. We also discuss the challenges and trends in reconstructing more comprehensive cancer models for basic and clinical cancer research.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
Don Carlo Ramos Batara ◽  
Moon-Chang Choi ◽  
Hyeon-Uk Shin ◽  
Hyunggee Kim ◽  
Sung-Hak Kim

Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy’s pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Meng Liu ◽  
Xia Li ◽  
Rui Fan ◽  
Xinhua Liu ◽  
Ju Wang

Nicotine, as the major psychoactive component of tobacco, has broad physiological effects within the central nervous system, but our understanding of the molecular mechanism underlying its neuronal effects remains incomplete. In this study, we performed a systematic analysis on a set of nicotine addiction-related genes to explore their characteristics at network levels. We found that NAGenes tended to have a more moderate degree and weaker clustering coefficient and to be less central in the network compared to alcohol addiction-related genes or cancer genes. Further, clustering of these genes resulted in six clusters with themes in synaptic transmission, signal transduction, metabolic process, and apoptosis, which provided an intuitional view on the major molecular functions of the genes. Moreover, functional enrichment analysis revealed that neurodevelopment, neurotransmission activity, and metabolism related biological processes were involved in nicotine addiction. In summary, by analyzing the overall characteristics of the nicotine addiction related genes, this study provided valuable information for understanding the molecular mechanisms underlying nicotine addiction.


2021 ◽  
Vol 32 (2) ◽  
pp. 91-97
Author(s):  
John M. Coffin

The simultaneous discovery in 1970 of reverse transcriptase in virions of retroviruses by Howard Temin and David Baltimore was perhaps the most dramatic scientific moment of the second half of the 20th century. Ten years previously, Temin’s observation of cells transformed by Rous Sarcoma virus led him to the conclusion that retroviruses replicate through a DNA intermediate he called the provirus. This heretical hypothesis was greeted with derision by fellow scientists; Temin and Baltimore performed a simple experiment, rapidly reproduced, and convincing to all. Its result was a major paradigm shift—reversal of the central dogma of molecular biology. It immediately grabbed the attention of both the scientific and lay press. It also came at a key time for cancer research, at the start of the “War on Cancer.” As a theoretical base and fundamental molecular tool, it enabled a decade of (largely fruitless) search for human oncogenic retroviruses but laid the foundation for the discovery of HIV 13 years later, leading to the development of effective therapy. I had the good fortune, as a student in Temin’s lab, to witness these events. I am honored to be able to share my recollection on the occasion of their 50th anniversary.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5616
Author(s):  
Eugenia Fernandez ◽  
Luis Ubillos ◽  
Nabila Elgul ◽  
María Florencia Festari ◽  
Daniel Mazal ◽  
...  

Breast cancer is a public health concern and is currently the fifth cause of mortality worldwide. Identification of different biological subtypes is essential for clinical management; therefore, the role of pathologists is essential and useful tools for immunohistochemistry diagnosis are needed. Polypeptide-GalNAc-transferases are emerging novel biomarkers related to cancer behavior and GalNAc-T13, correlated with aggressiveness in some tumors, is an interesting candidate. Few monoclonal antibodies reacting with native proteins, and not affected by fixation and paraffin embedding, have been reported. The aim of this work was to develop a useful monoclonal antibody anti-GalNAc-T13 and to assess its potential significance in breast cancer diagnosis. We evaluated 6 human breast cancer cell lines, 338 primary breast tumors and 48 metastatic lymph nodes and looked for clinical significance correlating GalNAc-T13 expression with patients’ clinical features and survival. We found high GalNAc-T13 expression in 43.8% of the cases and observed a significant higher expression in metastatic lymph nodes, correlating with worse overall survival. We hypothesized several possible molecular mechanisms and their implications. We conclude that GalNAc-T13 may be a novel biomarker in breast cancer, useful for routine pathological diagnosis. Elucidation of molecular mechanisms related to aggressiveness should contribute to understand the role of GalNAc-T13 in breast cancer biology.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1213
Author(s):  
Anca Irina Ristescu ◽  
Crina Elena Tiron ◽  
Adrian Tiron ◽  
Ioana Grigoras

Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment. The effects of supplemental oxygen on the long-term mortality of surgical cancer patients offer, at this point, conflicting results. In experimental studies, hyperoxia effects on cancer biology were explored following multiple pathways. In cancer cell cultures and animal models, hyperoxia increases the production of reactive oxygen species (ROS) and increases the oxidative stress. These can be followed by the induction of the expression of Brain-derived neurotrophic factor (BDNF) and other molecules involved in angiogenesis and by the promotion of various degrees of epithelial mesenchymal transition (EMT).


Author(s):  
Oriol Pich ◽  
Iker Reyes-Salazar ◽  
Abel Gonzalez-Perez ◽  
Nuria Lopez-Bigas

AbstractMutations in genes that confer a selective advantage to hematopoietic stem cells (HSCs) in certain conditions drive clonal hematopoiesis (CH). While some CH drivers have been identified experimentally or through epidemiological studies, the compendium of all genes able to drive CH upon mutations in HSCs is far from complete. We propose that identifying signals of positive selection in blood somatic mutations may be an effective way to identify CH driver genes, similarly as done to identify cancer genes. Using a reverse somatic variant calling approach, we repurposed whole-genome and whole-exome blood/tumor paired samples of more than 12,000 donors from two large cancer genomics cohorts to identify blood somatic mutations. The application of IntOGen, a robust driver discovery pipeline, to blood somatic mutations across both cohorts, and more than 24,000 targeted sequenced samples yielded a list of close to 70 genes with signals of positive selection in CH, available at http://www.intogen.org/ch. This approach recovers all known CH genes, and discovers novel candidates. Generating this compendium is an essential step to understand the molecular mechanisms of CH and to accurately detect individuals with CH to ascertain their risk to develop related diseases.


Sign in / Sign up

Export Citation Format

Share Document