epithelial fusion
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Keisuke Ishihara ◽  
Arghyadip Mukherjee ◽  
Elena Gromberg ◽  
Jan Brugues ◽  
Elly Tanaka ◽  
...  

Animal organs exhibit complex topologies involving cavities and tubular networks, which underlie their form and function. However, how topology emerges during organ morphogenesis remains elusive. Here, we combine tissue reconstitution and quantitative microscopy to show that trans and cis epithelial fusion govern tissue topology and shape. These two modes of topological transitions can be regulated in neuroepithelial organoids, leading to divergent topologies. The morphological space can be captured by a single control parameter which is analogous to the reduced Gaussian rigidity of an epithelial surface. Finally, we identify a pharmacologically accessible pathway that regulates the frequency of trans and cis fusion, and demonstrate the control of organoid topology and shape. The physical principles uncovered here provide fundamental insights into the self-organization of complex tissues.


2021 ◽  
pp. 1-19
Author(s):  
Vishal Chaturvedi ◽  
Michael J. Murray

Epithelial remodelling plays a crucial role during development. The ability of epithelial sheets to temporarily lose their integrity as they fuse with other epithelial sheets underpins events such as the closure of the neural tube and palate. During fusion, epithelial cells undergo some degree of epithelial-mesenchymal transition (EMT), whereby cells from opposing sheets dissolve existing cell-cell junctions, degrade the basement membrane, extend motile processes to contact each other, and then re-establish cell-cell junctions as they fuse. Similar events occur when an epithelium is wounded. Cells at the edge of the wound undergo a partial EMT and migrate towards each other to close the gap. In this review, we highlight the emerging role of Netrins in these processes, and provide insights into the possible signalling pathways involved. Netrins are secreted, laminin-like proteins that are evolutionarily conserved throughout the animal kingdom. Although best known as axonal chemotropic guidance molecules, Netrins also regulate epithelial cells. For example, Netrins regulate branching morphogenesis of the lung and mammary gland, and promote EMT during Drosophila wing eversion. Netrins also control epithelial fusion during optic fissure closure and inner ear formation, and are strongly implicated in neural tube closure and secondary palate closure. Netrins are also upregulated in response to organ damage and epithelial wounding, and can protect against ischemia-reperfusion injury and speed wound healing in cornea and skin. Since Netrins also have immunomodulatory properties, and can promote angiogenesis and re-innervation, they hold great promise as potential factors in future wound healing therapies.


2021 ◽  
Author(s):  
Beatriz Fernández‐Santos ◽  
José Manuel Caro‐Vega ◽  
Noelia Sola‐Idígora ◽  
Cecilia Lazarini‐Suárez ◽  
Laura Mañas‐García ◽  
...  

Author(s):  
Brian Ho Ching Chan ◽  
Mariya Moosajee ◽  
Joe Rainger

A key embryonic process that occurs early in ocular development is optic fissure closure (OFC). This fusion process closes the ventral optic fissure and completes the circumferential continuity of the 3-dimensional eye. It is defined by the coming together and fusion of opposing neuroepithelia along the entire proximal-distal axis of the ventral optic cup, involving future neural retina, retinal pigment epithelium (RPE), optic nerve, ciliary body, and iris. Once these have occurred, cells within the fused seam differentiate into components of the functioning visual system. Correct development and progression of OFC, and the continued integrity of the fused margin along this axis, are important for the overall structure of the eye. Failure of OFC results in ocular coloboma—a significant cause of childhood visual impairment that can be associated with several complex ocular phenotypes including microphthalmia and anterior segment dysgenesis. Despite a large number of genes identified, the exact pathways that definitively mediate fusion have not yet been found, reflecting both the biological complexity and genetic heterogeneity of the process. This review will highlight how recent developmental studies have become focused specifically on the epithelial fusion aspects of OFC, applying a range of model organisms (spanning fish, avian, and mammalian species) and utilizing emerging high-resolution live-imaging technologies, transgenic fluorescent models, and unbiased transcriptomic analyses of segmentally-dissected fissure tissue. Key aspects of the fusion process are discussed, including basement membrane dynamics, unique cell behaviors, and the identities and fates of the cells that mediate fusion. These will be set in the context of what is now known, and how these point the way to new avenues of research.


Development ◽  
2020 ◽  
Vol 147 (24) ◽  
pp. dev193649
Author(s):  
Aara Patel ◽  
Glenn Anderson ◽  
Gabriel L. Galea ◽  
Monika Balys ◽  
Jane C. Sowden

ABSTRACTOcular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis. Gene set enrichment patterns showed conservation between species. Expression of genes involved in epithelial-to-mesenchymal transition was transiently enriched in the human fissure margins during OFC at days 41-44. Electron microscopy and histological analyses showed that cells transiently delaminate at the point of closure, and produce cytoplasmic protrusions, before rearranging to form two continuous epithelial layers. Apoptosis was not observed in the human fissure margins. These analyses support a model of human OFC in which epithelial cells at the fissure margins undergo a transient epithelial-to-mesenchymal-like transition, facilitating cell rearrangement to form a complete optic cup.


2019 ◽  
Author(s):  
Benedikt T. Best ◽  
Maria Leptin

AbstractThe tracheal epithelium in fruit fly larvae is a popular model for multi- and unicellular migration and morphogenesis. Like all epithelial cells, tracheal cells use Rab GTPases to organise their internal membrane transport, resulting in the specific localisation or secretion of proteins on the apical or basal membrane compartments. Some contributions of Rabs to junctional remodelling and governance of tracheal lumen contents are known, but it is reasonable to assume that they play important further roles in morphogenesis. This pertains in particular to terminal tracheal cells, specialised branch-forming cells that drastically reshape both their apical and basal membrane during the larval stages. We performed a loss-of-function screen in the tracheal system, knocking down endogenously tagged alleles of 26 Rabs by targeting the tag via RNAi. This revealed that at least 14 Rabs are required to ensure proper cell fate specification and migration of the dorsal branches, as well as their epithelial fusion with the contralateral dorsal branch. The screen implicated four Rabs in the subcellular morphogenesis of terminal cells themselves. Further tests suggested residual gene function after knockdown, leading us to discuss the limitations of this approach. We conclude that more Rabs than identified here may be important for tracheal morphogenesis, and that the tracheal system offers great opportunities for studying several Rabs that have barely been characterised so far.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Holly Hardy ◽  
James GD Prendergast ◽  
Aara Patel ◽  
Sunit Dutta ◽  
Violeta Trejo-Reveles ◽  
...  

Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research.


2019 ◽  
Author(s):  
Holly Hardy ◽  
James GD Prendergast ◽  
Aara Patel ◽  
Sunit Dutta ◽  
Violeta Trejo-Reveles ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Piyal Taru Das Gupta ◽  
Maithreyi Narasimha

Epithelial fusion establishes continuity between the separated flanks of epithelial sheets. Despite its importance in creating resilient barriers, the mechanisms that ensure stable continuity and preserve morphological and molecular symmetry upon fusion remain unclear. Using the segmented embryonic epidermis whose flanks fuse during Drosophila dorsal closure, we demonstrate that epidermal flanks modulate cell numbers and geometry of their fusing fronts to achieve fusion fidelity. While fusing flanks become more matched for both parameters before fusion, differences persisting at fusion are corrected by modulating fusing front width within each segment to ensure alignment of segment boundaries. We show that fusing cell interfaces are remodelled from en-face contacts at fusion to an interlocking arrangement after fusion, and demonstrate that changes in interface length and geometry are dependent on the spatiotemporal regulation of cytoskeletal tension and Bazooka/Par3. Our work uncovers genetically constrained and mechanically triggered adaptive mechanisms contributing to fusion fidelity and epithelial continuity.


Sign in / Sign up

Export Citation Format

Share Document