total energy dissipation
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Datao Xu ◽  
Huiyu Zhou ◽  
Julien S. Baker ◽  
Bíró István ◽  
Yaodong Gu

Bionic shoes utilizing an actual foot shape sole structure can alter lower limb’s biomechanics, which may help in the development of specific training or rehabilitation programs. The purpose of this study was to investigate the biomechanical differences in the lower limb during a single-leg landing task using bionic shoes (BS) and normal shoes (NS). Fifteen healthy male subjects participated in this study, sagittal, and frontal plane data were collected during the landing phase (drop landing from 35 cm platform). Our study showed that BS depicted a significantly greater minimum knee flexion angle at initial contact (p = 0.000), a significantly greater minimum (initial contact) hip flexion angle at initial contact (p = 0.009), a significantly smaller sagittal plane total energy dissipation (p = 0.028), a significantly smaller frontal plane total energy dissipation (p = 0.008), a significantly smaller lower limb total energy dissipation (p = 0.017) than NS during the landing phase. SPM analysis revealed that BS depicted a significantly smaller knee joint vertical reaction force during the 13.8–19.8% landing phase (p = 0.01), a significantly smaller anterior tibia shear force during the 14.2–17.5% landing phase (p = 0.024) than NS. BS appears to change lower limb kinematics at initial contact and then readjust the landing strategies for joint work and joint reaction force, thereby reducing the risk of lower limb skeletal muscle injury. BS have great potential for future development and application uses, which may help athletes to reduce lower limb injury risk.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 317
Author(s):  
Alexander O. Gusev ◽  
Leonid M. Martyushev

The simplest model of the evolution of agents with different energy strategies is considered. The model is based on the most general thermodynamic ideas and includes the procedures for selection, inheritance, and variability. The problem of finding a universal strategy (principle) as a selection of possible competing strategies is solved. It is shown that when there is non-equilibrium between the medium and agents, a direction in the evolution of agents arises, but at the same time, depending on the conditions of the evolution, different strategies can be successful. However, for this case, the simulation results reveal that in the presence of significant competition of agents, the strategy that has the maximum total energy dissipation of agents arising as a result of evolution turns out to be successful. Thus, it is not the specific strategy that is universal, but the maximization of dissipation. This result discovers an interesting connection between the basic principles of Darwin–Wallace evolution and the maximum entropy production principle.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6540
Author(s):  
Rafael D. Viana ◽  
João A. Lorenzzetti ◽  
Jonas T. Carvalho ◽  
Ferdinando Nunziata

The total energy dissipation rate on the ocean surface, ϵt (W m−2), provides a first-order estimation of the kinetic energy input rate at the ocean–atmosphere interface. Studies on the spatial and temporal distribution of the energy dissipation rate are important for the improvement of climate and wave models. Traditional oceanographic research normally uses remote measurements (airborne and platforms sensors) and in situ data acquisition to estimate ϵt; however, those methods cover small areas over time and are difficult to reproduce especially in the open oceans. Satellite remote sensing has proven the potential to estimate some parameters related to breaking waves on a synoptic scale, including the energy dissipation rate. In this paper, we use polarimetric Synthetic Aperture Radar (SAR) data to estimate ϵt under different wind and sea conditions. The used methodology consisted of decomposing the backscatter SAR return in terms of two contributions: a polarized contribution, associated with the fast response of the local wind (Bragg backscattering), and a non-polarized (NP) contribution, associated with wave breaking (Non-Bragg backscattering). Wind and wave parameters were estimated from the NP contribution and used to calculate ϵt from a parametric model dependent of these parameters. The results were analyzed using wave model outputs (WAVEWATCH III) and previous measurements documented in the literature. For the prevailing wind seas conditions, the ϵt estimated from pol-SAR data showed good agreement with dissipation associated with breaking waves when compared to numerical simulations. Under prevailing swell conditions, the total energy dissipation rate was higher than expected. The methodology adopted proved to be satisfactory to estimate the total energy dissipation rate for light to moderate wind conditions (winds below 10 m s−1), an environmental condition for which the current SAR polarimetric methods do not estimate ϵt properly.


Author(s):  
Alexandra Seymour-Pierce ◽  
Ben Lishman ◽  
Peter Sammonds

Ice samples, after sliding against a steel runner, show evidence of recrystallization and microcracking under the runner, as well as macroscopic cracking throughout the ice. The experiments that produced these ice samples are designed to be analogous to sliding in the winter sport of skeleton. Changes in the ice fabric are shown using thick and thin sections under both diffuse and polarized light. Ice drag is estimated as 40–50% of total energy dissipation in a skeleton run. The experimental results are compared with visual inspections of skeleton tracks, and to similar behaviour in rocks during sliding on earthquake faults. The results presented may be useful to athletes and designers of winter sports equipment. This article is part of the themed issue ‘Microdynamics of ice’.


2016 ◽  
Vol 113 (12) ◽  
pp. E1655-E1662 ◽  
Author(s):  
Dvir Harris ◽  
Ofir Tal ◽  
Denis Jallet ◽  
Adjélé Wilson ◽  
Diana Kirilovsky ◽  
...  

In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5–10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation.


2015 ◽  
Vol 45 (9) ◽  
pp. 2221-2238 ◽  
Author(s):  
Johannes Gemmrich ◽  
Jody M. Klymak

AbstractTwo-dimensional simulations of stratified flow over an isolated ridge are used to evaluate energy dissipation associated with barotropic tidal flow over topography with critical or near-critical slope. In the midslope region, a shallow borelike flow forms along the bottom in a layer where dissipation rates are increased by several orders of magnitude, and the flow speed is about twice the barotropic background velocity. The height and turbulence in this layer depend on predictable functions of stratification, rotation, and the characteristic forcing speed. A physically sound power-law parameterization of the total energy dissipation associated with this turbulent layer is presented. This simple parameterization is also applicable to coarser-resolution models, where it may be included to compute energy dissipation above continental slopes, even for cases where the slope angle differs somewhat from criticality.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Deepak B. Patil ◽  
Melih Eriten

A finite element model (FEM) is used to investigate the effect of roughness on the frictional energy dissipation for an elastic contact subjected to simultaneous normal and tangential oscillations. Frictional energy losses are correlated against the maximum tangential load as a power-law where the exponents show the degree of nonlinearity. Individual asperity is shown to undergo similar stick–slip cycles during a loading period. Taller asperities are found to contribute significantly to the total energy dissipation and dominate the trends in the total energy dissipation. The authors' observations for spherical contacts are extended to the rough surface contact, which shows that power-law exponent depends on stick durations individual asperity contacts experience. A theoretical model for energy dissipation is then validated with the FEM, for both spherical and rough surface contacts. The model is used to study the influence of roughness parameters (asperity density, height distribution, and fractal dimension) on magnitude of energy dissipation and power-law exponents. Roughness parameters do not influence the power-law exponents. For a phase difference of π/2 between normal and tangential oscillations, the frictional energy dissipation shows quadratic dependence on the tangential fluctuation amplitude, irrespective of the roughness parameters. The magnitude of energy dissipation is governed by the real area of contact and, hence, depends on the surface roughness parameters. Larger real area of contact results in more energy under similar loading conditions.


2012 ◽  
Vol 542-543 ◽  
pp. 769-774
Author(s):  
Qun Ling Yu ◽  
Na Bai ◽  
Yan Zhou ◽  
Rui Xing Li ◽  
Jun Ning Chen ◽  
...  

A new technique for reducing the offset of latch-type sense amplifier has been proposed and effect of enable signal voltage upon latch-type sense amplifier offset in SRAM has been investigated in this paper. Circuit simulation results on both StrongARM and Double-tail topologies show that the standard deviation of offset can be reduced by 31.23% (StrongARM SA) and 25.2% (Double-tail SA) , respectively, when the voltage of enable signal reaches 0.6V in TSMC 65nm CMOS technology. For a column of bit-cell (1024 bit-cell), the total speed is improved by 14.98% (StrongARAM SA) and 22.26% (Double-tail SA) at the optimal operation point separately, and the total energy dissipation is reduced by 30.45% and 29.47% with this scheme.


2011 ◽  
Vol 23 (1) ◽  
pp. 181-200 ◽  
Author(s):  
PAOLO BISCARI ◽  
TIMOTHY J. SLUCKIN

We present an asymptotic theory that includes in a perturbative expansion the coupling effects between the director dynamics and the velocity field in a nematic liquid crystal. Backflow effects are most significant in the presence of defect motion, since in this case the presence of a velocity field may strongly reduce the total energy dissipation and thus increase the defect velocity. As an example, we illustrate how backflow influences the speeds of opposite-charged defects.


2009 ◽  
Vol 36 (6) ◽  
pp. 1037-1050 ◽  
Author(s):  
G. Adriana Camino ◽  
David Z. Zhu ◽  
Nallamuthu Rajaratnam ◽  
Manas Shome

This paper reports on a laboratory investigation into the performance of a novel stacked drop manhole design where two identical rectangular manholes are stacked one beside the other but at different heights so that there is a drop in elevation from one to the other. The focus of the study was to estimate the energy dissipation that occurs in such stacked manholes during diverse inflow conditions. Flow regimes inside the structure were identified and the effectiveness of the design was assessed under variable inflow conditions. Total energy dissipation in the stacked manhole was found to range from about 50% to 90%, and the contribution of each manhole chamber to the overall energy dissipation was assessed. A relationship between water depths in the manhole chambers and the corresponding outflow conditions was established. In addition, an analysis of the flow patterns and flow regimes highlighted the relevant parameters involved in the mechanisms of energy dissipation.


Sign in / Sign up

Export Citation Format

Share Document