Numerical and experimental analysis on the helicopter rotor dynamic load controlled by the actively trailing edge flap

Author(s):  
zixuan zhou ◽  
Xiuchang Huang ◽  
Jiajin Tian ◽  
Hongxing Hua ◽  
Ming Tang ◽  
...  

Abstract Reducing the rotor dynamic load is an important issue to improve the performance and reliability of a helicopter. The control mechanism of the actively controlled flap on the rotor dynamic load is numerically and experimentally investigated by a 3-blade helicopter rotor in this paper. In the aero-elastic numerical approach, the complex motion of the rotor such as the stretching, bending, torsion and pitching of the blade including the deflection of the actively controlled flap (ACF) are all taken into consideration in the structural formulation. The aerodynamic solution adopted the vortex lattice method combining with the free wake model, in which the influence of ACF on the free wake and the aerodynamic load on the blade is taken into account as well. While the experimental method of measuring hub loads and acoustic was accomplished by a rotor rig in a wind tunnel. The result shows that the 3/rev ACF actuation can reduce the $3\omega$ hub load by more than 50\% at maximum, which is significantly better than the 4/rev control. While 4/rev has greater potential to reduce BVI loads than 3/rev with $\mu=0.15$. Further mechanistic analysis shows that by changing the phase difference between the dynamic load on the flap and the rest of the blade, the peak load on the whole blade can be improved, thus achieving effective control of the hub dynamic load, the flap reaches the minimum angle of attack at 90°-100° azimuth under best control condition; when the BVI load is perfectly controlled, the flap reaches the minimum angle of attack at 140° azimuth, and by changing the circulation of the wake, the intensity of blade vortex interaction in the advancing side is improved. Moreover, an interesting finding in the optimal control of noise and vibration is that an overlap point exist on the motion patterns of the flap with different frequencies.

2021 ◽  
Author(s):  
Zhan Qiu ◽  
Fuxin Wang

Abstract The effect of structural paramters on the response and aerodynamic stiffness characteristics of the free aeroelastic system under the influence of dynamic stall is investigated adopting CFD (Computational Fluid Dynamics) method. The equilibrium angle of the spring and the structural stiffness are taken as parameters of interest. Systems with small equilibrium angles enter the symmetric limit-cycle state more quickly after a Hopf bifurcation and experience dynamic stall in both directions, rather than slowly decreasing in minimum angle of attack and remaining in the asymmetric limit-cycle state before dynamic stall in the opposite direction, as is the case with systems with large spring equilibrium angles. Thus, aerodynamic stiffness of system with large equilibrium angles can be more significantly influenced by the change in aerodynamic moment characteristics at the minimum angle of attack. Furthermore, by increasing the initial angular velocity, we find that the system response all becomes symmetric limit cycle and therefore the aerodynamic stiffness appears to have a monotonically increasing characteristic. As to the effect of structural stiffness, it is found that the limit cycle amplitude first increases with structural stiffness after bifurcation, then the amplitude is unchanged with varying structural stiffness at higher Mach number. Energy maps show that the parametric distribution of the energy transfer contributes to this phenomenon. Moreover, when entering the symmetric limit cycle state, the structural stiffness no longer has a significant effect on the aerodynamic stiffness of the system, as the increase in the aerodynamic stiffness is determined solely by the increase in dynamic pressure without the effect of changes in moment characteristics.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Bo Yan ◽  
Mengqi Cai

A new calculation method of critical wind speed based on three degrees of freedom (3-DOF) is proposed for galloping problem of iced transmission line. Based on the quasistatic theory, the aerodynamic load of iced transmission line is obtained, which considers the influence of transverse and torsional motion on the relative wind angle of attack. Finally, the equivalent galloping model of 3-DOF iced transmission line is established. At the initial angle of attack, the aerodynamic load is expanded by Taylor, and the unsymmetrical linear aerodynamic coefficient matrix is obtained. The Routh–Hurwitz criterion is used to judge the stability of iced transmission line system, and then the critical wind speed is calculated. The in-plane and out-plane frequencies corresponding to the first-order mode of the transmission line are solved by the analytical method and numerical simulation method. The results obtained by the two methods are compared and verified. The influence of dimensionless transmission line parameter λ on the in-plane and out-of-plane frequencies is discussed. The aerodynamic coefficients of the iced transmission line are measured by wind tunnel test and the aerodynamic characteristics are analyzed. According to the theoretical formula, the critical wind speed is calculated by MATLAB. The critical wind speed determined in this paper is compared with the critical wind speed determined by Den Hartog and Nigol theory. The influences of torsional vibration frequency, ice thickness, and ice shape on critical wind speed are analyzed. The research results of this paper have important theoretical significance for the stability judgment of iced transmission lines.


Author(s):  
Liangquan Wang ◽  
Guohua Xu ◽  
Yongjie Shi

Prediction of helicopter rotor impulsive noise is practically a very challenging task. This paper describes a hybrid method to predict rotor impulsive noise for both high-speed impulsive noise and blade–vortex interaction noise. The hybrid solver has been developed by combining the advantages of three different methods: (1) a computational fluid dynamics method based on Reynolds-averaged Navier–Stokes equations to account for the viscous and compressible effects near the blade; (2) a vorticity transport model to predict rotor wake system without artificial dissipation; and (3) an acoustic calculation method, based on Ffowcs-Williams Hawkings equation implemented to a permeable data surface. The developed hybrid solver is validated through available test data, for the cases of UH-1H model rotor, AH-1 Operational Loads Survey rotor, and Helishape 7A rotor. Peak sound pressure level of high-speed impulsive noise is accurately predicted with relative errors less than 7%. Additionally, acoustic waveform of blade–vortex interaction noise is well captured though it is sensitive to small changes in aerodynamic load. It is suggested that present hybrid method is versatile for the prediction of rotor impulsive noise with moderate computational cost.


2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Stavros Vouros ◽  
Ioannis Goulos ◽  
Calum Scullion ◽  
Devaiah Nalianda ◽  
Vassilios Pachidis

Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semiempiricism is accompanied with uncertainty related to the modeling of physical wake parameters. In some cases, analysts have to resort to empirical adaption of these parameters based on previous experimental evidence. This paper investigates the impact of inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade–vortex interactions. A rotor aeroacoustics model, based on integral solutions of the Ffowcs Williams–Hawkings equation, is utilized to calculate aerodynamic noise in the time domain. The individual analytical models are incorporated into an uncertainty analysis numerical procedure, implemented through nonintrusive Polynomial Chaos expansion. The potential sources of uncertainty in wake tip-vortex core growth modeling are identified and their impact on noise predictions is systematically quantified. When experimental data to adjust the tip-vortex core model are not available the uncertainty in acoustic pressure and noise impact at observers dominated by blade–vortex interaction noise can reach up to 25% and 3.50 dB, respectively. A set of generalized uncertainty maps is derived, for use as modeling guidelines for aeroacoustic analysis in the absence of the robust evidence necessary for calibration of semiempirical vortex core models.


Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract In any congested area, where a fixed-wing aircraft cannot perform, rotary-wing counterparts are the best-suited option for its vertical take-off and landing capacity. The vibration induced by the rotor blade is a significant problem in helicopter performances. Rotor aerodynamic loading, rotor dynamics, and fuselage dynamics are the elements that contribute to the vibration of a helicopter. Among these elements, the key reason for the helicopter vibration is the aerodynamic loading. Determining aerodynamic loading is one of the most important criteria to design a rotor blade and to minimize vibration. Rotor harmonic airloads are generated from the rapid variation of flow around the rotor blade due to the vortex wake. A rapid drop in the circulation near the blade tip causes tip vortices which are the reason for the maximum lift at the tip of the blade. Consequently, tip vortices become the primary source of harmonic airloads. In this study, a specimen of Bo 105 helicopter rotor blade is considered to observe the aerodynamic characteristics under the external flow of air. The coefficients of lift and drag of the specimen for different angles of attack and azimuth angles are estimated. The resonance frequencies and the mode shapes are obtained. Computational results are validated by the experimental analyses of a small-scaled model of the rotor blade. From the study, the coefficient of lift is found to increase with the angle of attack up to a critical value. Similarly, the coefficient of drag increases with the angle of attack. The resonance frequencies significantly change with scaling the rotor blade.


Sign in / Sign up

Export Citation Format

Share Document