Temperature-compensated constitutive model of fused filament fabrication 3D printed PLA materials with full extrusion temperatures

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kaiyang Zhu ◽  
Zichen Deng ◽  
Shi Dai ◽  
Yajun Yu

Purpose This study aims to focus on the effect of interlayer bonding and thermal decomposition on the mechanical properties of fused filament fabrication-printed polylactic acid specimens at high extrusion temperatures. Design/methodology/approach A printing process, that is simultaneous manufacturing of contour and specimen, is used to improve the printing accuracy at high extrusion temperatures. The effects of the extrusion temperature on the mechanical properties of the interlayer and intra-layer are evaluated via tensile experiments. In addition, the microstructure evolution affected by the extrusion temperature is observed using scanning electron microscopy. Findings The results show that the extrusion temperature can effectively improve the interlayer bonding property; however, the mechanical properties of the specimen for extrusion temperatures higher than 270°C may worsen owing to the thermal decomposition of the polylactic acid (PLA) material. The optimum extrusion temperature of PLA material in the three-dimensional (3D) printing process is recommended to be 250–270°C. Originality/value A temperature-compensated constitutive model for 3D printed PLA material under different extrusion temperatures is proposed. The present work facilitates the prediction of the mechanical properties of specimens at an extrusion temperature for different printing temperatures and different layers.

2019 ◽  
Vol 26 (3) ◽  
pp. 549-555
Author(s):  
Jin Young Choi ◽  
Mark Timothy Kortschot

Purpose The purpose of this study is to confirm that the stiffness of fused filament fabrication (FFF) three-dimensionally (3D) printed fiber-reinforced thermoplastic (FRP) materials can be predicted using classical laminate theory (CLT), and to subsequently use the model to demonstrate its potential to improve the mechanical properties of FFF 3D printed parts intended for load-bearing applications. Design/methodology/approach The porosity and the fiber orientation in specimens printed with carbon fiber reinforced filament were calculated from micro-computed tomography (µCT) images. The infill portion of the sample was modeled using CLT, while the perimeter contour portion was modeled with a rule of mixtures (ROM) approach. Findings The µCT scan images showed that a low porosity of 0.7 ± 0.1% was achieved, and the fibers were highly oriented in the filament extrusion direction. CLT and ROM were effective analytical models to predict the elastic modulus and Poisson’s ratio of FFF 3D printed FRP laminates. Research limitations/implications In this study, the CLT model was only used to predict the properties of flat plates. Once the in-plane properties are known, however, they can be used in a finite element analysis to predict the behavior of plate and shell structures. Practical implications By controlling the raster orientation, the mechanical properties of a FFF part can be optimized for the intended application. Originality/value Before this study, CLT had not been validated for FFF 3D printed FRPs. CLT can be used to help designers tailor the raster pattern of each layer for specific stiffness requirements.


2019 ◽  
Vol 26 (4) ◽  
pp. 639-647
Author(s):  
Michele Angelo Attolico ◽  
Caterina Casavola ◽  
Alberto Cazzato ◽  
Vincenzo Moramarco ◽  
Gilda Renna

Purpose The purpose of this paper is to verify the effects of extrusion temperature on orthotropic behaviour of the mechanical properties of parts obtained by fused filament fabrication (FFF) under quasi-static tensile loads. Design/methodology/approach Tensile tests were performed on single layer specimens fabricated in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) to evaluate the mechanical properties at different extrusion temperatures and raster orientations (0°, 45° and 90°). Furthermore, a detailed study of morphological characteristics of the single layer samples cross-section and of the bonding quality among adjacent deposited filaments was performed by scanning electron microscopy to correlate the morphology of materials with mechanical behaviour. Findings The results show that the orthotropic behaviour of FFF-printed parts tends to reduce, while the mechanical properties improved with increase in extrusion temperature. Furthermore, the increase in extrusion temperature led to an improvement in inter-raster bonding quality and in the compactness and homogeneity of the parts. Originality/value The relation between the extrusion temperature, orthotropic behaviour and morphological surface characteristics of the single layer specimen obtained by FFF has not been previously reported.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1487 ◽  
Author(s):  
Yuhan Liao ◽  
Chang Liu ◽  
Bartolomeo Coppola ◽  
Giuseppina Barra ◽  
Luciano Di Maio ◽  
...  

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.


2021 ◽  
Vol 27 (3) ◽  
pp. 487-495
Author(s):  
João Araújo Afonso ◽  
Jorge Lino Alves ◽  
Gabriela Caldas ◽  
Barbara Perry Gouveia ◽  
Leonardo Santana ◽  
...  

Purpose This paper aims to evaluate the influence of the parameters of the Fused Filament Fabrication (FFF) process on the mechanical properties and on the mass of parts printed in Polylactic Acid (PLA). In addition, the authors developed predictive models for the analysed responses. Design/methodology/approach A full Factorial type of experimental planning method was used to define the conditions for manufacturing parts according to the variation of the construction parameters, extrusion temperature and print speed. Samples were printed for tensile, flexion and compression tests. Their mass was measured. Multiple regression methods, based on power equations, were used to build the forecasting models. Findings It was found that the extrusion temperature was the parameter of greatest influence in the variation of the analysed responses, mainly because it generates behaviour patterns and indirectly demonstrates thermal/rheological characteristics of the material used. Print speed affects responses, however, with variations dependent on part geometry and printer hardware/software. It was possible to establish prediction models with low error rates in relation to the experimental values. Originality/value The study demonstrates a good relation between the use of a structured experimental planning method as the basis for the development of predictive models based on mathematical equations, the same structure of which can be used to describe different responses.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2195
Author(s):  
Tanner David Harpool ◽  
Ibrahim Mohammed Alarifi ◽  
Basheer A. Alshammari ◽  
Abdul Aabid ◽  
Muneer Baig ◽  
...  

The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, VC.H of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property’s values in industrial applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Natalia von Windheim ◽  
David W. Collinson ◽  
Trent Lau ◽  
L. Catherine Brinson ◽  
Ken Gall

Purpose The purpose of this study is to understand how printing parameters and subsequent annealing impacts porosity and crystallinity of 3D printed polylactic acid (PLA) and how these structural characteristics impact the printed material’s tensile strength in various build directions. Design/methodology/approach Two experimental studies were used, and samples with a flat vs upright print orientation were compared. The first experiment investigates a scan of printing parameters and annealing times and temperatures above the cold crystallization temperature (Tcc) for PLA. The second experiment investigates annealing above and below Tcc at multiple points over 12 h. Findings Annealing above Tcc does not significantly impact the porosity but it does increase crystallinity. The increase in crystallinity does not contribute to an increase in strength, suggesting that co-crystallization across the weld does not occur. Atomic force microscopy (AFM) images show that weld interfaces between printed fibers are still visible after annealing above Tcc, confirming the lack of co-crystallization. Annealing below Tcc does not significantly impact porosity or crystallinity. However, there is an increase in tensile strength. AFM images show that annealing below Tcc reduces thermal stresses that form at the interfaces during printing and slightly “heals” the as-printed interface resulting in an increase in tensile strength. Originality/value While annealing has been explored in the literature, it is unclear how it affects porosity, crystallinity and thermal stresses in fused filament fabrication PLA and how those factors contribute to mechanical properties. This study explains how co-crystallization across weld interfaces is necessary for crystallinity to increase strength and uses AFM as a technique to observe morphology at the weld.


2020 ◽  
Vol 72 (10) ◽  
pp. 1259-1265
Author(s):  
Mohamad Nordin Mohamad Norani ◽  
Mohd Fadzli Bin Abdollah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Hilmi Amiruddin ◽  
Faiz Redza Ramli ◽  
...  

Purpose This study aims is to investigate the correlation between tribological and mechanical properties of the fused filament fabrication 3D-printed acrylonitrile butadiene styrene (ABS) pin with different internal geometries. Design/methodology/approach The tribological properties were determined by a dry sliding test with constant test parameters, while the hardness and modulus of elasticity were determined by microhardness and compression tests. Findings Although the internal geometry of the pin sample slightly affects the coefficient of friction (COF) and the wear rate of the 3D-printed ABS, it was important to design a lightweight tribo-component by reducing the material used to save energy without compromising the strength of the component. The COF and wear rate values are relatively dependent on the elastic modulus. A 3D-printed ABS pin with an internal triangular flip structure was found to have the shortest run-in period and the lowest COF with high wear resistance. Abrasive wear and delamination are the predominant wear mechanisms involved. Research limitations/implications The findings are the subject of future research under various sliding conditions by investigating the synergistic effect of sliding speeds and applied loads to validate the results of this study. Originality/value The internal structure affects the mechanical properties and release stress concentration at the contact point, resulting in hypothetically low friction and wear. This approach may also reduce the weight of the parts without scarifying or at least preserving their preceding tribological performance. Therefore, based on our knowledge, limited studies have been conducted for the application of 3D printing in tribology, and most studies focused on improving their mechanical properties rather than correlating them with tribological properties that would benefit longer product lifespans. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0143/


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Author(s):  
A Miranda ◽  
M Leite ◽  
L Reis ◽  
E Copin ◽  
MF Vaz ◽  
...  

The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.


2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.


Sign in / Sign up

Export Citation Format

Share Document