scholarly journals Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 645
Author(s):  
Gamal A. Mohamed ◽  
Sabrin R. M. Ibrahim

The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.

2021 ◽  
Vol 7 (11) ◽  
pp. 943
Author(s):  
Sabrin R. M. Ibrahim ◽  
Alaa Sirwi ◽  
Basma G. Eid ◽  
Shaimaa G. A. Mohamed ◽  
Gamal A. Mohamed

Fungi have been assured to be one of the wealthiest pools of bio-metabolites with remarkable potential for discovering new drugs. The pathogenic fungi, Fusarium oxysporum affects many valuable trees and crops all over the world, producing wilt. This fungus is a source of different enzymes that have variable industrial and biotechnological applications. Additionally, it is widely employed for the synthesis of different types of metal nanoparticles with various biotechnological, pharmaceutical, industrial, and medicinal applications. Moreover, it possesses a mysterious capacity to produce a wide array of metabolites with a broad spectrum of bioactivities such as alkaloids, jasmonates, anthranilates, cyclic peptides, cyclic depsipeptides, xanthones, quinones, and terpenoids. Therefore, this review will cover the previously reported data on F. oxysporum, especially its metabolites and their bioactivities, as well as industrial relevance in biotechnology and nanotechnology in the period from 1967 to 2021. In this work, 180 metabolites have been listed and 203 references have been cited.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250954
Author(s):  
Maria da Luz Calado ◽  
Joana Silva ◽  
Celso Alves ◽  
Patrícia Susano ◽  
Débora Santos ◽  
...  

Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 698 ◽  
Author(s):  
Fan Zhang ◽  
Doug R. Braun ◽  
Scott R. Rajski ◽  
Don DeMaria ◽  
Tim S. Bugni

To date, studies describing myxobacterial secondary metabolites have been relatively scarce in comparison to those addressing actinobacterial secondary metabolites. This realization suggests the immense potential of myxobacteria as an intriguing source of secondary metabolites with unusual structural features and a wide array of biological activities. Marine-derived myxobacteria are especially attractive due to their unique biosynthetic gene clusters, although they are more difficult to handle than terrestrial myxobacteria. Here, we report the discovery of two new pyrazinone-type molecules, enhypyrazinones A and B, from a marine-derived myxobacterium Enhygromyxa sp. Their structures were elucidated by HRESIMS and comprehensive NMR data analyses. Compounds 1 and 2, which contain a rare trisubstituted-pyrazinone core, represent a unique class of molecules from Enhygromyxa sp.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 313
Author(s):  
Clarissa Marcelle Naidoo ◽  
Yougasphree Naidoo ◽  
Yaser Hassan Dewir ◽  
Hosakatte Niranjana Murthy ◽  
Salah El-Hendawy ◽  
...  

Several species belonging to the genus Tabernaemontana have been well researched and utilized for their wide-ranging biological activities. A few of the most prominent species include Tabernaemontana divaricata, Tabernaemontana catharinensis, Tabernaemontana crassa, and Tabernaemontana elegans. These species and many others within the genus often display pharmacological importance, which is habitually related to their chemical constituents. The secondary metabolites within the genus have demonstrated huge medicinal potential for the treatment of infections, pain, injuries, and various diseases. Regardless of the indispensable reports and properties displayed by Tabernaemontana spp., there remains a wide variety of plants that are yet to be considered or examined. Thus, an additional inclusive study on species within this genus is essential. The current review aimed to extensively analyze, collate, and describe an updated report of the current literature related to the major alkaloidal components and biological activities of species within the genus Tabernaemontana.


Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
James C. Charlesworth ◽  
Brendan P. Burns

Archaea are an understudied domain of life often found in “extreme” environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 569
Author(s):  
Zhaoming Liu ◽  
Hongxin Liu ◽  
Weimin Zhang

Natural polypropionates (PPs) are a large subgroup of polyketides with diverse structural features and bioactivities. Most of the PPs are discovered from marine organisms including mollusks, fungi and actinomycetes, while some of them are also isolated from terrestrial resources. An increasing number of studies about PPs have been carried out in the past two decades and an updated review is needed. In this current review, we summarize the chemical structures and biological activities of 164 natural PPs reported in 67 research papers from 1999 to 2020. The isolation, structural features and bioactivities of these PPs are discussed in detail. The chemical diversity, bioactive diversity, biodiversity and the relationship between chemical classes and the bioactivities are also concluded.


2019 ◽  
Vol 7 (6) ◽  
pp. 176 ◽  
Author(s):  
Boris Andryukov ◽  
Valery Mikhailov ◽  
Nataly Besednova

Marine habitats are a rich source of molecules of biological interest. In particular, marine bacteria attract attention with their ability to synthesize structurally diverse classes of bioactive secondary metabolites with high biotechnological potential. The last decades were marked by numerous discoveries of biomolecules of bacterial symbionts, which have long been considered metabolites of marine animals. Many compounds isolated from marine bacteria are unique in their structure and biological activity. Their study has made a significant contribution to the discovery and production of new natural antimicrobial agents. Identifying the mechanisms and potential of this type of metabolite production in marine bacteria has become one of the noteworthy trends in modern biotechnology. This path has become not only one of the most promising approaches to the development of new antibiotics, but also a potential target for controlling the viability of pathogenic bacteria.


2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


2018 ◽  
Vol 24 (17) ◽  
pp. 1899-1904
Author(s):  
Daniel Fabio Kawano ◽  
Marcelo Rodrigues de Carvalho ◽  
Mauricio Ferreira Marcondes Machado ◽  
Adriana Karaoglanovic Carmona ◽  
Gilberto Ubida Leite Braga ◽  
...  

Background: Fungal secondary metabolites are important sources for the discovery of new pharmaceuticals, as exemplified by penicillin, lovastatin and cyclosporine. Searching for secondary metabolites of the fungi Metarhizium spp., we previously identified tyrosine betaine as a major constituent. Methods: Because of the structural similarity with other inhibitors of neprilysin (NEP), an enzyme explored for the treatment of heart failure, we devised the synthesis of tyrosine betaine and three analogues to be subjected to in vitro NEP inhibition assays and to molecular modeling studies. Results: In spite of the similar binding modes with other NEP inhibitors, these compounds only displayed moderate inhibitory activities (IC50 ranging from 170.0 to 52.9 µM). However, they enclose structural features required to hinder passive blood brain barrier permeation (BBB). Conclusions: Tyrosine betaine remains as a starting point for the development of NEP inhibitors because of the low probability of BBB permeation and, consequently, of NEP inhibition at the Central Nervous System, which is associated to an increment in the Aβ levels and, accordingly, with a higher risk for the onset of Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document