amino acid conservation
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 119 (4) ◽  
pp. e2113118119
Author(s):  
Juan Rodriguez-Rivas ◽  
Giancarlo Croce ◽  
Maureen Muscat ◽  
Martin Weigt

The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.


2021 ◽  
Author(s):  
Juan Rodriguez-Rivas ◽  
Giancarlo Croce ◽  
Maureen Muscat ◽  
Martin Weigt

The emergence of new variants of SARS-CoV-2 is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, pre-existing to SARS-CoV-2, we build statistical models that do not only capture amino-acid conservation but more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (ROC AUC ~0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution, future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shirin Fatma ◽  
Arpita Chakravarti ◽  
Xuankun Zeng ◽  
Raven H. Huang

AbstractCyclic-oligonucleotide-based antiphage signaling systems (CBASS) are diverse and abundant in bacteria. Here, we present the biochemical and structural characterization of two CBASS systems, composed of CdnG and Cap5, from Asticcacaulis sp. and Lactococcus lactis. We show that CdnG from Asticcacaulis sp. synthesizes 3′,2′-cGAMP in vitro, and 3′,2′-cGAMP is the biological signaling molecule that activates Cap5 for DNA degradation. Crystal structures of Cap5, together with the SAVED domain in complex with 3′,2′-cGAMP, provide insight into the architecture of Cap5 as well as molecular recognition of 3′,2′-cGAMP by the SAVED domain of Cap5. Amino acid conservation of the SAVED domain of Cap5, together with mutational studies, led us to propose a mechanism of Back-to-Front stacking of two SAVED domains, mediated by 3′,2′-cGAMP, to activate HNH nuclease domain for DNA degradation. This study of the most abundant CBASS system provides insights into the mechanisms employed by bacteria in their conflicts against phage.


2021 ◽  
Author(s):  
Shirin Fatma ◽  
Arpita Chakravarti ◽  
Xuankun Zeng ◽  
Raven H Huang

Cyclic-oligonucleotide-based antiphage signaling systems (CBASS) are diverse and abundant in bacteria. Here, we present biochemical and structural characterization of two CBASS systems, composed of CdnG and Cap5, from Asticcacaulis sp. and Lactococcus lactis. We show that CdnG from Asticcacaulis sp. synthesizes 3′,2′-cGAMP in vitro, and 3′,2′-cGAMP is the biological signaling molecule that activates Cap5 for DNA degradation. Crystal structures of Cap5, together with the SAVED domain in complex with 3′,2′-cGAMP, provide insight into the architecture of Cap5 as well as molecular recognition of 3′,2′-cGAMP by the SAVED domain of Cap5. Amino acid conservation of the SAVED domain of Cap5, together with mutational studies, led us to propose a novel mechanism of Back-to-Front stacking of two SAVED domains, mediated by 3′,2′-cGAMP, to activate HNH nuclease domain for DNA degradation. Our study of the most abundant CBASS system provides new insight into mechanisms employed by bacteria in their conflicts against phage.


2021 ◽  
Author(s):  
Anton Kalyuzhnyy ◽  
Patrick A. Eyers ◽  
Claire E. Eyers ◽  
Zhi Sun ◽  
Eric W. Deutsch ◽  
...  

AbstractMass spectrometry-based phosphoproteomics allows large-scale generation of phosphorylation site data. However, analytical pipelines need to be carefully designed and optimised to minimise incorrect identification of phosphopeptide sequences or wrong localisation of phosphorylation sites within those peptides. Public databases such as PhosphoSitePlus (PSP) and PeptideAtlas (PA) compile results from published papers or openly available MS data, but to our knowledge, there is no database-level control for false discovery of sites, subsequently leading to the likely overestimation of true phosphosites. It is therefore difficult for researchers to assess which phosphosites are “real” and which are likely to be artefacts of data processing. By profiling the human phosphoproteome, we aimed to estimate the false discovery rate (FDR) of phosphosites based on available evidence in PSP and/or PA and predict a more realistic count of true phosphosites. We ranked sites into phosphorylation likelihood sets based on layers of accumulated evidence and then analysed them in terms of amino acid conservation across 100 species, sequence properties and functional annotations of associated proteins. We demonstrated significant differences between the sets and developed a method for independent phosphosite FDR estimation. Remarkably, we estimated a false discovery rate of 86.1%, 95.4% and 82.2% within sets of described phosphoserine (pSer), phosphothreonine (pThr) and phosphotyrosine (pTyr) sites respectively for which only a single piece of identification evidence is available (the vast majority of sites in PSP). Overall, we estimate that ∼56,000 Ser, 10,000 Thr and 12,000 Tyr phosphosites in the human proteome have truly been identified to date, based on evidence in PSP and/or PA, which is lower than most published estimates. Furthermore, our analysis estimated ∼91,000 Ser, 49,000 Thr and 26,000 Tyr sites that are likely to represent false-positive phosphosite identifications. We conclude that researchers should be aware of the significant potential for false positive sites to be present in public databases and should evaluate the evidence behind the phosphosites used in their research.


2021 ◽  
Author(s):  
Amanda D. Melin ◽  
Joseph D. Orkin ◽  
Mareike C. Janiak ◽  
Alejandro Valenzuela ◽  
Lukas Kuderna ◽  
...  

AbstractThe novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 1.5 million fatalities since it first emerged in late 2019. As we write, infection rates are currently at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary viral target is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predicts that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results and finds additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and Endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.


2021 ◽  
Author(s):  
Jeremie Courraud ◽  
Eric Chater-Diehl ◽  
Benjamin Durand ◽  
Marie Vincent ◽  
Maria del Mar Muniz Moreno ◽  
...  

ABBSTRACTDYRK1A-related intellectual disability (ID) is among the most frequent monogenic form of ID. We refined the description of this disorder by reporting clinical and molecular data of forty individuals with ID harboring DYRK1A variants. We developed a combination of tools to interpret missense variants, which remains a major challenge in human genetics: i) a specific DYRK1A clinical score, ii) amino acid conservation data generated from one hundred of DYRK1A sequences across different taxa, iii) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins, and iv) a specific blood DNA methylation signature. This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, yet reported as pathogenic, and showed it does not cause obvious phenotype in mice, emphasizing the need to take care when interpreting variants, even those occurring de novo.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1054
Author(s):  
Entedar A. J. Alsaadi ◽  
Benjamin W. Neuman ◽  
Ian M. Jones

Coronaviruses (CoVs) are enveloped, positive sense, single strand RNA viruses that cause respiratory, intestinal and neurological diseases in mammals and birds. Following replication, CoVs assemble on intracellular membranes including the endoplasmic reticulum Golgi intermediate compartment (ERGIC) where the envelope protein (E) functions in virus assembly and release. In consequence, E potentially contains membrane-modifying peptides. To search for such peptides, the E coding sequence of Mouse Hepatitis Virus (MHV) was inspected for its amino acid conservation, proximity to the membrane and/or predicted amphipathic helices. Peptides identified in silico were synthesized and tested for membrane-modifying activity in the presence of giant unilamellar vesicles (GUVs) consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin and cholesterol. To confirm the presence of membrane binding peptides identified in the context of a full-length E protein, the wild type and a number of mutants in the putative membrane binding peptide were expressed in Lenti-X-293T mammalian and insect cells, and the distribution of E antigen within the expressing cell was assessed. Our data identify a role for the post-transmembrane region of MHV E in membrane binding.


Author(s):  
Sk. Sarif Hassan ◽  
Shinjini Ghosh ◽  
Diksha Attrish ◽  
Pabitra Pal Choudhury ◽  
Murat Seyran ◽  
...  

AbstractImmune evasion is one of the unique characteristics of COVID-19 attributed to the ORF8 protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This protein is involved in modulating the host adaptive immunity through downregulating MHC (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the interferon mediated antiviral response of the host. To understand the immune perspective of the host with respect to the ORF8 protein, a comprehensive study of the ORF8 protein as well as mutations possessed by it, is performed. Chemical and structural properties of ORF8 proteins from different hosts, that is human, bat and pangolin, suggests that the ORF8 of SARS-CoV-2 and Bat RaTG13-CoV are very much closer related than that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 (SARS-CoV-2) are grouped into four classes based on their predicted effects. Based on geolocations and timescale of collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were endorsed upon sequence similarity and amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of rapid evolving SARS-CoV-2 through the ORF8.


2020 ◽  
Author(s):  
Zhen-lu Li ◽  
Matthias Buck

AbstractDespite large differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins often with subtle differences in amino acid sequence. By comparing a set of substantially homologous proteins between model vertebrate organisms at a sub-proteome level, we discover a pattern of amino acid conservation and a shift in amino acid use, noticeably with an apparent distinction between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, we establish a connection between the thermoadaptation of protein sequences manifest in the evolved proteins and two of their physical features: a change in their proteins dynamics and in their solvation. For poikilotherms such as frog and fish, the lower body temperature is expected to increase the association of proteins due to a decrease in protein dynamics and correspondingly lower entropy penalty on binding. In order to prevent overly-sticky protein association at low temperatures, we find that poikilotherms enhance the solvation of their proteins by favoring polar amino acids on their protein’s surface. This study unveils a general mechanism behind amino acid choices that constitute part of the thermoadaptation of vertebrate organisms at the molecular level.


Sign in / Sign up

Export Citation Format

Share Document