scholarly journals Variation in predicted COVID-19 risk among lemurs and lorises

2021 ◽  
Author(s):  
Amanda D. Melin ◽  
Joseph D. Orkin ◽  
Mareike C. Janiak ◽  
Alejandro Valenzuela ◽  
Lukas Kuderna ◽  
...  

AbstractThe novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 1.5 million fatalities since it first emerged in late 2019. As we write, infection rates are currently at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary viral target is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predicts that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results and finds additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and Endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 57
Author(s):  
Zhi-Ling Zhu ◽  
Xiao-Dan Qiu ◽  
Shuo Wu ◽  
Yi-Tong Liu ◽  
Ting Zhao ◽  
...  

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Sally Badawi ◽  
Bassam R. Ali

AbstractWith the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2–based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Esraa M. O. A. Ismail ◽  
Shaza W. Shantier ◽  
Mona S. Mohammed ◽  
Hassan H. Musa ◽  
Wadah Osman ◽  
...  

The recent outbreak of the highly contagious coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 has created a global health crisis with socioeconomic impacts. Although, recently, vaccines have been approved for the prevention of COVID-19, there is still an urgent need for the discovery of more efficacious and safer drugs especially from natural sources. In this study, a number of quinoline and quinazoline alkaloids with antiviral and/or antimalarial activity were virtually screened against three potential targets for the development of drugs against COVID-19. Among seventy-one tested compounds, twenty-three were selected for molecular docking based on their pharmacokinetic and toxicity profiles. The results identified a number of potential inhibitors. Three of them, namely, norquinadoline A, deoxytryptoquivaline, and deoxynortryptoquivaline, showed strong binding to the three targets, SARS-CoV-2 main protease, spike glycoprotein, and human angiotensin-converting enzyme 2. These alkaloids therefore have promise for being further investigated as possible multitarget drugs against COVID-19.


2020 ◽  
Author(s):  
Xingyi Guo ◽  
Zhishan Chen ◽  
Yumin Xia ◽  
Weiqiang Lin ◽  
Hongzhi Li

Abstract Background: The outbreak of coronavirus disease (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its surface spike glycoprotein (S-protein) recognition on the receptor Angiotensin-converting enzyme 2 (ACE2) in humans. However, it remains unclear how genetic variations in ACE2 may affect its function and structure, and consequently alter the recognition by SARS-CoV-2. Methods: We have systemically characterized missense variants in the gene ACE2 using data from the Genome Aggregation Database (gnomAD; N = 141,456). To investigate the putative deleterious role of missense variants, six existing functional prediction tools were applied to evaluate their impact. We further analyzed the structural flexibility of ACE2 and its protein-protein interface with the S-protein of SARS-CoV-2 using our developed Legion Interfaces Analysis (LiAn) program.Results: Here, we characterized a total of 12 ACE2 putative deleterious missense variants. Of those 12 variants, we further showed that p.His378Arg could directly weaken the binding of catalytic metal atom to decrease ACE2 activity and p.Ser19Pro could distort the most important helix to the S-protein. Another seven missense variants may affect secondary structures (i.e. p.Gly211Arg; p.Asp206Gly; p.Arg219Cys; p.Arg219His, p.Lys341Arg, p.Ile468Val, and p.Ser547Cys), whereas p.Ile468Val with AF = 0.01 is only present in Asian.Conclusions: We provide strong evidence of putative deleterious missense variants in ACE2 that are present in specific populations, which could disrupt the function and structure of ACE2. These findings provide novel insight into the genetic variation in ACE2 which may affect the SARS-CoV-2 recognition and infection, and COVID-19 susceptibility and treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Alexander Kamyshnyi ◽  
Inna Krynytska ◽  
Victoriya Matskevych ◽  
Mariya Marushchak ◽  
Oleh Lushchak

Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is an ongoing global public health challenge. Current clinical data suggest that, in COVID-19 patients, arterial hypertension (AH) is one of the most common cardiovascular comorbidities; it can worsen outcomes and increase the risk of admission to intensive care unit (ICU). The exact mechanisms through which AH contributes to the poor prognosis in COVID-19 are not yet clear. The putative relationship between AH and COVID-19 may be linked to the role of angiotensin-converting enzyme 2 (ACE2), a key element of the AH pathophysiology. Another mechanism connecting AH and COVID-19 is the dysregulation of the immune system resulting in a cytokine storm, mediated by an imbalanced response of T helper cells subtypes. Therefore, it is essential to optimize blood pressure control in hypertensive patients and monitor them carefully for cardiovascular and other complications for the duration of COVID-19 infection. The question whether AH-linked ACE2 gene polymorphisms increase the risk and/or worsen the course of SARS-CoV-2 infection should also receive further consideration.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinsung Yang ◽  
Simon J. L. Petitjean ◽  
Melanie Koehler ◽  
Qingrong Zhang ◽  
Andra C. Dumitru ◽  
...  

Abstract Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Mohammad Pourfridoni ◽  
Seyede Mahsa Abbasnia ◽  
Fateme Shafaei ◽  
Javad Razaviyan ◽  
Reza Heidari-Soureshjani

The novel coronavirus disease 2019 (COVID-19) is the cause of an acute respiratory illness which has spread around the world. The virus infects the host by binding to the angiotensin-converting enzyme 2 (ACE2) receptors. Due to the presence of ACE2 receptors in the kidneys and gastrointestinal (GI) tract, kidneys and GI tract damage arising from the virus can be seen in patients and can cause acute conditions such as acute kidney injury (AKI) and digestive problems for the patient. One of the complications of kidneys and GI involvement in COVID-19 is fluid and electrolyte disturbances. The most common ones of these disorders are hyponatremia, hypernatremia, hypokalemia, hypocalcemia, hypochloremia, hypervolemia, and hypovolemia, which if left untreated, cause many problems for patients and even increase mortality. Fluid and electrolyte disturbances are more common in hospitalized and intensive care patients. Children are also at greater risk for fluid and electrolyte disturbances complications. Therefore, clinicians should pay special attention to the fluid and electrolyte status of patients. Changes in fluid and electrolyte levels can be a good indicator of disease progression.


Author(s):  
Abhijit Mohan Kanavaje ◽  
Vipul Ajit Sansare

Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, this disease has spread rapidly around the globe. On 11 March 2020, WHO declared Novel Coronavirus Disease (COVID-19) outbreak as a pandemic and reiterated the call for countries to take immediate actions and scale up the response to treat, detect and reduce transmission to save people’s lives. As of 3 April 2020, according to the Ministry of Health & Family Welfare (MoHFW), a total of 2301 COVID-19 cases (including 55 foreign nationals) have been reported in 29 states/union territories. These include 156 who have been cured/discharged,1 who has migrated, and 56 deaths in India. Considering the potential threat of a pandemic, scientists and physicians have been racing to understand this new virus and the pathophysiology of this disease to uncover possible treatment regimens and discover effective therapeutic agents and vaccines. The objective of this review article was to have a preliminary opinion about the disease, the ways of treatment, and prevention in this early stage of this outbreak.


2020 ◽  
Author(s):  
Saroj Kumar Panda ◽  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein-hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields two-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide-inhibitor of the novel coronavirus. The binding of the spike protein and the best peptide-inhibitor with hACE-2 is explored further by molecular dynamics, free energy, and principal component analysis to demonstrate its efficacy. Further, the inhibition assay study with the best peptide inhibitor is in progress. </p>


2020 ◽  
Vol 15 ◽  
Author(s):  
Maki Komiyama ◽  
Koji Hasegawa ◽  
Akira Matsumori

Multiple lines of evidence have shown that elevated blood troponin is strongly associated with poor prognosis in patients with the novel coronavirus disease 2019 (COVID-19). Possible mechanisms of myocardial injury in COVID-19 include ischaemia due to circulatory and respiratory failure, epicardial or intramyocardial small coronary artery thrombotic obstruction due to increased coagulability, and myocarditis caused by systemic inflammation or direct binding of the virus to its receptor, angiotensin-converting enzyme-2 (ACE2), which is abundantly expressed in the heart. It is postulated that persistent immune activation upon viral infection increases the risk of developing dilated cardiomyopathy in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document