skin compatibility
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 6 (6) ◽  
pp. 336-346
Author(s):  
ernadette C. Aggabao ◽  
Melanie Santos-Manuel

The present pandemic threatens not only the people’s health but the demand of ABHR (Alcohol Based Hand-rub) which can lead to improved compliance of hand hygiene practices. This study was designed to determine the acceptability and tolerability of ABHR for the hand hygiene of employees and students of Kalinga State University. 40 participants were enumerated according to the WHO protocol which comprised primarily of faculty and staff (60%), the majority were female (58%). Few of the respondents reported asthmatic conditions (10%) and any non-work activity/ies (7.5%) that would damage their skin in the duration of the test period. The majority of the criteria set by the WHO for the acceptability of the product were deemed acceptable except for the two parameters, texture (45%) and drying effect (50%) which is below the recommended percentage of the WHO. The said parameters were suggested to be improved for the next study. The respondents reported their satisfaction with the produced ABHR and added that the test product improved their hand hygiene practices (75%). A separate study should be considered to assess the Product tolerability and skin compatibility with a trained medical staff per WHO Protocol so that objective assessment by an independent observer as well as subjective assessment will be assessed.



Cosmetics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 96
Author(s):  
Jorge Teno ◽  
María Pardo-Figuerez ◽  
Nancy Hummel ◽  
Vincent Bonin ◽  
Alessandra Fusco ◽  
...  

The world of cosmetics is now aiming at biobased materials which are skin-compatible and can be used to generate more sustainable beauty masks with enhanced bioactivity. This work presents, in this line of interest, the combination of two innovative technologies, namely electrospinning and dry powder impregnation, to generate biobased skin soluble electrospun pullulan carriers dry impregnated with chitin nanofibrils-nanolignin-glycyrrethinic acid (CLA) complexes, as effective biobased and skin compatible beauty masks. The scalability of the pullulan electrospun carrier and bioactive complexes impregnation were optimized and the morphology evaluated. Subsequently, skin compatibility and mask effectiveness were investigated in vitro and in vivo. The results showed that cell viability was optimal for both impregnated and neat pullulan fibers. Additionally, the CLA impregnated pullulan fibers were able to upregulate the endogenous antimicrobial molecule HBD-2. Preliminary studies in vivo indicated that the beauty mask containing the CLA complexes significantly decreased area, length and depth of forehead and crow’s feet wrinkles, and significantly increased moisturizing levels in the skin. The developed beauty mask was also seen to increase skin firmness, while it did not show skin irritation after the test. The work demonstrates that the combination of these two technologies may open new alternatives to more sustainable bioactive cosmetic products for the skin.



Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1099
Author(s):  
Simms A. Adu ◽  
Patrick J. Naughton ◽  
Roger Marchant ◽  
Ibrahim M. Banat

Cosmetic and personal care products are globally used and often applied directly on the human skin. According to a recent survey in Europe, the market value of cosmetic and personal care products in Western Europe reached about 84 billion euros in 2018 and are predicted to increase by approximately 6% by the end of 2020. With these significant sums of money spent annually on cosmetic and personal care products, along with chemical surfactants being the main ingredient in a number of their formulations, of which many have been reported to have the potential to cause detrimental effects such as allergic reactions and skin irritations to the human skin; hence, the need for the replacement of chemical surfactants with other compounds that would have less or no negative effects on skin health. Biosurfactants (surfactants of biological origin) have exhibited great potential such as lower toxicity, skin compatibility, protection and surface moisturizing effects which are key components for an effective skincare routine. This review discusses the antimicrobial, skin surface moisturizing and low toxicity properties of glycolipid and lipopeptide biosurfactants which could make them suitable substitutes for chemical surfactants in current cosmetic and personal skincare pharmaceutical formulations. Finally, we discuss some challenges and possible solutions for biosurfactant applications.



2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Karthik Paneer Selvam ◽  
Taichi Nagahata ◽  
Kosuke Kato ◽  
Mayuko Koreishi ◽  
Toshiyuki Nakamura ◽  
...  

Abstract Background Conductive sheets of cellulose and carbon nanomaterials and its human skin applications are an interesting research aspect as they have potential for applications for skin compatibility. Hence it is needed to explore the effects and shed light on these applications. Method To fabricate wearable, portable, flexible, lightweight, inexpensive, and biocompatible composite materials, carbon nanohorns (CNHs) and hydroxyethylcellulose (HEC) were used as precursors to prepare CNH-HEC (Cnh-cel) composite sheets. Cnh-cel sheets were prepared with different loading concentrations of CNHs (10, 20 50,100 mg) in 200 mg cellulose. To fabricate the bio-compatible sheets, a pristine composite of CNHs and HEC was prepared without any pretreatment of the materials. Results The obtained sheets possess a conductivity of 1.83 × 10− 10 S/m and bio-compatible with human skin. Analysis for skin-compatibility was performed for Cnh-cel sheets by h-CLAT in vitro skin sensitization tests to evaluate the activation of THP-1 cells. It was found that THP-1 cells were not activated by Cnh-cel; hence Cnh-cel is a safe biomaterial for human skin. It was also found that the composite allowed only a maximum loading of 100 mg to retain the consistent geometry of free-standing sheets of < 100 μm thickness. Since CNHs have a unique arrangement of aggregates (dahlia structure), the composite is homogeneous, as verified by transmission electron microscopy (TEM) and, scanning electron microscopy (SEM), and other functional properties investigated by Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), conductivity measurement, tensile strength measurement, and skin sensitization. Conclusion It can be concluded that cellulose and CNHs sheets are conductive and compatible to human skin applications.



2020 ◽  
Author(s):  
Karthik Paneer Selvam ◽  
Taichi Nagahata ◽  
Kosuke Kato ◽  
Mayuko Koreishi ◽  
Toshiyuki Nakamura ◽  
...  

Abstract Background: Conductive sheets of cellulose and carbon nanomaterials and its human skin applications are an interesting research aspect as they have potential for applications for skin compatibility. Hence it is needed to explore the effects and shed light on these applications.Method: To fabricate wearable, portable, flexible, lightweight, inexpensive, and biocompatible composite materials, carbon nanohorns (CNHs) and hydroxyethylcellulose (HEC) were used as precursors to prepare CNH-HEC (Cnh-cel) composite sheets. Cnh-cel sheets were prepared with different loading concentrations of CNHs (10, 20 50,100 mg) in 200 mg cellulose. To fabricate the bio-compatible sheets, a pristine composite of CNHs and HEC was prepared without any pretreatment of the materials. Results: The obtained sheets possess a conductivity of 1.83×10-10 S/m and bio-compatible with human skin. Analysis for skin-compatibility was performed for Cnh-cel sheets by h-CLAT in vitro skin sensitization tests to evaluate the activation of THP-1 cells. It was found that THP-1 cells were not activated by Cnh-cel; hence Cnh-cel is a safe biomaterial for human skin. It was also found that the composite allowed only a maximum loading of 100 mg to retain the consistent geometry of free-standing sheets of < 100 µm thickness. Since CNHs have a unique arrangement of aggregates (dahlia structure), the composite is homogeneous, as verified by transmission electron microscopy (TEM) and, scanning electron microscopy (SEM), and other functional properties investigated by Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), conductivity measurement, tensile strength measurement, and skin sensitization.Conclusion: It can be concluded that cellulose and CNHs sheets are conductive and compatible to human skin applications.



2020 ◽  
Author(s):  
Karthik Paneer Selvam ◽  
Taichi Nagahata ◽  
Kosuke Kato ◽  
Mayuko Koreishi ◽  
Toshiyuki Nakamura ◽  
...  

Abstract Background: Conductive sheets of cellulose and carbon nanomaterials and its human skin applications are an interesting research aspect as they have potential for applications for skin compatibility. Hence it is needed to explore the effects and shed light on these applications.Method: To fabricate wearable, portable, flexible, lightweight, inexpensive, and biocompatible composite materials, carbon nanohorns (CNHs) and hydroxyethylcellulose (HEC) were used as precursors to prepare CNH-HEC (Cnh-cel) composite sheets. Cnh-cel sheets were prepared with different loading concentrations of CNHs (10, 20 50,100 mg) in 200 mg cellulose. To fabricate the bio-compatible sheets, a pristine composite of CNHs and HEC was prepared without any pretreatment of the materials. Results: The obtained sheets are conductive (1.83×10-5­ S) and bio-compatible with human skin. Analysis for skin-compatibility was performed for Cnh-cel sheets by h-CLAT in vitro skin sensitization tests to evaluate the activation of THP-1 cells. It was found that THP-1 cells were not activated by Cnh-cel; hence Cnh-cel is a safe biomaterial for human skin. It was also found that the composite allowed only a maximum loading of 100 mg to retain the consistent geometry of free-standing sheets of < 100 µm thickness. Since CNHs have a unique arrangement of aggregates (dahlia structure), the composite is homogeneous, as verified by transmission electron microscopy (TEM) and, scanning electron microscopy (SEM), and other functional properties investigated by Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), conductance measurement, tensile strength measurement, and skin sensitization.Conclusion: It can be concluded that cellulose and CNHs sheets are conductive and compatible to human skin applications.



2020 ◽  
Author(s):  
Huan Liu ◽  
Fang Wang ◽  
Li Deng ◽  
Peng Xu

AbstractSqualene is the gateway molecule for triterpene-based natural products and steroids-based pharmaceuticals. As a super lubricant, it has been used widely in health care industry due to its skin compatibility and thermostability. Squalene is traditionally sourced from shark-hunting or oil plant extraction, which is cost-prohibitive and not sustainable. Reconstitution of squalene biosynthetic pathway in microbial hosts is considered as a promising alternative for cost-efficient and scalable synthesis of squalene. In this work, we reported the engineering of the oleaginous yeast, Y. lipolytica, as a potential host for squalene production. We systematically identified the bottleneck of the pathway and discovered that the native HMG-CoA reductase led to the highest squalene improvement. With the recycling of NADPH from the mannitol cycle, the engineered strain produced about 180.3 mg/l and 188.2 mg/L squalene from glucose or acetate minimal media, respectively. By optimizing the C/N ratio, controlling the media pH and mitigating the acetyl-CoA flux competition from lipogenesis, the engineered strain produced about 502.7 mg/L squalene in shake flaks, a 28-fold increase compared to the parental strain (17.2 mg/L). We also profiled the metabolic byproducts citric acid and mannitol level and observed that they are reincorporated into cell metabolism at the late stage of fermentation. This work may serve as a baseline to harness Y. lipolytica as an oleaginous cell factory for production of squalene or terpene-based chemicals.



2020 ◽  
Vol 11 (2) ◽  
pp. 21 ◽  
Author(s):  
Maria-Beatrice Coltelli ◽  
Laura Aliotta ◽  
Alessandro Vannozzi ◽  
Pierfrancesco Morganti ◽  
Luca Panariello ◽  
...  

Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films.





2019 ◽  
Vol 6 (5) ◽  
Author(s):  
James Bingham ◽  
Todd J Cartner ◽  
Patricia A Mays Suko ◽  
Rachel A Leslie

Abstract A non-antimicrobial soap was benchmarked against 2 reference soaps for microbial removal and skin compatibility, key factors in soap effectiveness and usage. The non-antimicrobial test soap removed more Staphylococcus aureus (P = .024) when applied to nonwetted hands and showed no difference in skin barrier function compared with the reference soaps (P = .736).



Sign in / Sign up

Export Citation Format

Share Document