scholarly journals Novel Non-Thermal Processing Technologies: Impact on Food Phenolic Compounds during Processing

2021 ◽  
Author(s):  
Josephine Ampofo ◽  
Michael Ngadi

In recent times, food consumption has advanced beyond simply meeting growth and development needs to include the supply of ingredients that can protect against diseases. Among such non-nutritive ingredients are phenolic compounds. These are benzene-ringed secondary metabolites produced in plants upon exposure to environmental stress. Previous studies have linked phenolic compounds to bioactive benefits (e.g., antioxidative, anti-inflammatory, and anti-cancer) with these bioactivities dependent on their biochemical structure and concentrations of individual phenolic compounds present in the food system. However, majority of plant foods are thermally processed into ready-to-eat forms, with these processing methods potentially altering the structure and subsequent bioactivities of endogenous phenolic compounds. Thus, the aim of this chapter is to highlight on emerging non-thermal novel technologies (such as pulsed electric field, radiation, ultrasonication, high hydrostatic pressure processing and high pressure carbon dioxide processing) that can be exploited by the food industry to preserve/enhance bioactivities of phenolic compounds during processing.

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 70 ◽  
Author(s):  
Natália Conceição ◽  
Bianca R. Albuquerque ◽  
Carla Pereira ◽  
Rúbia C. G. Corrêa ◽  
Camila B. Lopes ◽  
...  

Camu-camu (Myrciaria dubia (Kunth) McVaugh) is a fruit economically relevant to the Amazon region, mostly consumed in the form of processed pulp. Our aim was to perform an unprecedented comparative study on the chemical composition and bioactivities of the camu-camu pulp and industrial bio-residues (peel and seed), and then the most promising fruit part was further explored as a functionalized ingredient in yogurt. A total of twenty-three phenolic compounds were identified, with myricetin-O-pentoside and cyanindin-3-O-glucoside being the main compounds in peels, followed by p-coumaroyl hexoside in the pulp, and ellagic acid in the seeds. The peel displayed the richest phenolic profile among samples, as well as the most significant antibacterial (MICs = 0.625–10 mg/mL) and anti-proliferative (GI50 = 180 µg/mL against HeLa cells) activities. For this reason, it was selected to be introduced in a food system (yogurt). Taken together, our results suggest the possibility of using the camu-camu peel as a source of food additives.


2021 ◽  
Vol 11 (1) ◽  
pp. 93-96
Author(s):  
Shwetha Acharya ◽  
Vijay Tajane ◽  
Prof. Shubhangi

Mushroom (Agaricus bisporus) a noticeable umbrella-shaped fruiting body of certain fungi which grow vigorously. Mushrooms are highly enriched in protein, vitamins and marco-nutrients. Mushrooms are proven to have anti-allergic, anti-cholesterol, anti-tumor and anti-cancer qualities. The most desirable property of freeze-dried mushrooms such as the nutritional content and quality are maintained. The products shelf life is increased by using freeze drier from 12 days to 90 days. The mushroom cultivation is a viable and attractive activity and it does not require access to land and low investment too. The present study focused on analyzing the mushroom preservation techniques and producer's market potential by captivating consumer’s awareness. Self administered required to collect the primary data from consumers. SWOT analysis is used at the end to generate information and hypothesis testing is used for mathematical reasoning.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 343 ◽  
Author(s):  
Valentina Melini ◽  
Francesca Melini ◽  
Rita Acquistucci

Consumption of food products rich in phenolic compounds has been associated to reduced risk of chronic disease onset. Daily consumed cereal-based products, such as bread and pasta, are not carriers of phenolic compounds, since they are produced with refined flour or semolina. Novel formulations of pasta have been thus proposed, in order to obtain functional products contributing to the increase in phenolic compound dietary intake. This paper aims to review the strategies used so far to formulate functional pasta, both gluten-containing and gluten-free, and compare their effect on phenolic compound content, and bioaccessibility and bioavailability thereof. It emerged that whole grain, legume and composite flours are the main substituents of durum wheat semolina in the formulation of functional pasta. Plant by-products from industrial food wastes have been also used as functional ingredients. In addition, pre-processing technologies on raw materials such as sprouting, or the modulation of extrusion/extrusion-cooking conditions, are valuable approaches to increase phenolic content in pasta. Few studies on phenolic compound bioaccessibility and bioavailability in pasta have been performed so far; however, they contribute to evaluating the usefulness of strategies used in the formulation of functional pasta.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3354 ◽  
Author(s):  
Katarzyna Tyśkiewicz ◽  
Marcin Konkol ◽  
Edward Rój

Due to their numerous health benefits associated with various diseases and anti-oxidation properties, the phenolic compounds collectively referred to as phytochemicals have attracted a lot of interest, however, a single extraction method for polyphenols has not been developed yet. Supercritical fluid extraction, a green extraction method, provides the final product without organic solvent residues. In this work the extraction of lavender was performed using supercritical carbon dioxide. A statistical experimental design based on the Box-Behnken (B-B) method was planned, and the extraction yields and total phenolic contents were measured for three different variables: pressure, temperature and extraction time. The ranges were 200–300 bar, 40–60 °C and 15–45 min. The extracts yields from scCO2 extraction were in the range of 4.3–9.2 wt.%. The highest yield (9.2 wt.%) was achieved at a temperature of 60 °C under the pressure of 250 bar after 45 min. It also corresponded to the highest total phenolic content (10.17 mg GAE/g extract). Based on the study, the statistically generated optimal extraction conditions to obtain the highest total phenolic compounds concentration from flowers of Lavandula angustifolia were a temperature of 54.5 °C, pressure of 297.9 bar, and the time of 45 min. Based on the scavenging activity percentage (AA%) of scCO2 extracts, it is concluded that the increase of extraction pressure had a positive influence on the increase of AA% values.


2008 ◽  
Vol 100 (3) ◽  
pp. 711-719 ◽  
Author(s):  
David H. Fleisher ◽  
Dennis J. Timlin ◽  
Vangimalla R. Reddy

2019 ◽  
Vol 33 (1) ◽  
pp. 50-76 ◽  
Author(s):  
Sadia Afrin ◽  
Shoja M. Haneefa ◽  
Maria J. Fernandez-Cabezudo ◽  
Francesca Giampieri ◽  
Basel K. al-Ramadi ◽  
...  

AbstractDespite the much improved therapeutic approaches for cancer treatment that have been developed over the past 50 years, cancer remains a major cause of mortality globally. Considerable epidemiological and experimental evidence has demonstrated an association between ingestion of food and nutrients with either an increased risk for cancer or its prevention. There is rising interest in exploring agents derived from natural products for chemoprevention or for therapeutic purposes. Honey is rich in nutritional and non-nutritional bioactive compounds, as well as in natural antioxidants, and its potential beneficial function in human health is becoming more evident. A large number of studies have addressed the anti-cancer effects of different types of honey and their phenolic compounds using in vitro and in vivo cancer models. The reported findings affirm that honey is an agent able to modulate oxidative stress and has anti-proliferative, pro-apoptotic, anti-inflammatory, immune-modulatory and anti-metastatic properties. However, despite its reported anti-cancer activities, very few clinical studies have been undertaken. In the present review, we summarise the findings from different experimental approaches, including in vitro cell cultures, preclinical animal models and clinical studies, and provide an overview of the bioactive profile and bioavailability of the most commonly studied honey types, with special emphasis on the chemopreventive and therapeutic properties of honey and its major phenolic compounds in cancer. The implications of these findings as well as the future prospects of utilising honey to fight cancer will be discussed.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 814
Author(s):  
Andrea F. Afonso ◽  
Olívia R. Pereira ◽  
Susana M. Cardoso

Thymus genus comprises numerous species that are particularly abundant in the West Mediterranean region. A growing body of evidence suggests that many of these species are a rich source of bioactive compounds, including phenolic compounds such as rosmarinic acid, salvianolic acids and luteolin glycosides, able to render them potential applications in a range of industrial fields. This review collects the most relevant studies focused on the antioxidant, anti-inflammatory and anti-cancer of phenolic-rich extracts from Thymus plants, highlighting correlations made by the authors with respect to the main phenolic players in such activities.


Sign in / Sign up

Export Citation Format

Share Document