scholarly journals Driving Waveform Design Based on Driving Process Fusion and Black Reference Gray Scale for Electrophoretic Displays

2021 ◽  
Vol 9 ◽  
Author(s):  
Li Wang ◽  
Pengchang Ma ◽  
Jitao Zhang ◽  
Qiming Wan

An electrophoretic display (EPD) is a kind of paper display technology, which has the advantages of ultra-low power consumption and readability under strong light. However, in an EPD-driving process, four stages are needed to finish the driving of a pixel erase original images, reset to black state, clear-to-white state, and write a new image. A white reference gray scale can be obtained before writing a new image, and this driving process may take too long for the comfort of reading. In this article, an EPD-driving waveform, which takes the black state as the reference gray, is proposed to reduce the driving time. In addition, the rules of direct current (DC) balance are also followed to prevent the charge from getting trapped in the driving backplane. The driving process is fused and there are two stages in the driving waveform: reset to black state and write the next image. First, the EPD is written to a stable black state according to the original gray scale driving waveform and the black state is used as the reference gray for the next image. Second, the new image is written by the second stage of the new driving waveform. The experimental results show that the proposed driving waveform has a better performance. Compared with the traditional driving waveform which has four stages, the driving time of the new driving waveform is reduced by nearly 50%.

2021 ◽  
Vol 16 (3) ◽  
pp. 351-356
Author(s):  
Li Wang ◽  
Yi-Fan Zhang ◽  
Ji-Tao Zhang ◽  
Qi-Ming Wan ◽  
Peng-Chang Ma

The speed of updating an image is very important for an electrophoretic display (EPD) application, but the flicker which can be produced among the process of updating an image is a main factor of affecting reading comfort for human eyes. In this paper, a new driving waveform, which was based on DC balance, was proposed to reduce the number of flicker and decrease the driving time for updating an image. Firstly, we studied properties of particles in the EPD, and the stages in the driving waveform were fused according to the driving properties of the particles. Secondly, an accurate reference was formed in the driving waveform for writing a new image, and the particle activity was guaranteed at the same time. Lastly, the driving waveform was downloaded to a real EPD waveform look-up table and the performance was compared with traditional driving waveforms. Experimental results showed that the proposed driving waveform could reduce flicker effectively and shorten the driving time by 25%, and an accurate white reference gray scale was obtained for displaying high quality images.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 313 ◽  
Author(s):  
Zichuan Yi ◽  
Zhenyu Huang ◽  
Shufa Lai ◽  
Wenyao He ◽  
Li Wang ◽  
...  

The traditional driving waveform of the electrowetting display (EWD) has many disadvantages, such as the large oscillation of the target grayscale aperture ratio and a long time for achieving grayscale. Therefore, a driving waveform based on the exponential function was proposed in this study. First, the maximum driving voltage value of 30 V was obtained by testing the hysteresis curve of the EWD pixel unit. Secondly, the influence of the time constant on the driving waveform was analyzed, and the optimal time constant of the exponential function was designed by testing the performance of the aperture ratio. Lastly, an EWD panel was used to test the driving effect of the exponential-function-driving waveform. The experimental results showed that a stable grayscale and a short driving time could be realized when the appropriate time constant value was designed for driving EWDs. The aperture ratio oscillation range of the gray scale could be reduced within 0.95%, and the driving time of a stable grayscale was reduced by 30% compared with the traditional driving waveform.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 578
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Xichen Zhou ◽  
Yiming Zhao ◽  
Haoqiang Feng ◽  
...  

Three-color electrophoretic displays (EPDs) have the advantages of multi-color display and low power consumption. However, their red particles have the disadvantage of long response time. In this paper, a driving waveform, which is based on electrophoresis theory and reference gray scale optimization, was proposed to shorten the response time of red particles in three-color EPDs. The driving waveform was composed of erasing stage, reference gray scale forming stage, red driving stage, and white or black driving stage. Firstly, the characteristics of particle motion were analyzed by electrophoresis theory and Stokes law. Secondly, the reference gray scale of the driving waveform was optimized to shorten the distance between red particles and a common electrode plate. Finally, an experimental platform was developed to test the performance of the driving waveform. Experimental results showed that the proposed driving waveform can shorten the response time of red particles by 65.57% and reduce the number of flickers by 66.67% compared with the traditional driving waveform.


2011 ◽  
Vol 1359 ◽  
Author(s):  
Runying Dai ◽  
Gang Wu ◽  
Peipei Yin ◽  
Hongzheng Chen

ABSTRACTElectrophoretic displays, the rewritable non-light-emitting display technology based on the movement of colored pigments inside a low dielectric liquid as a voltage is applied, have attracted a great deal of academic and commercial interests due to the combination of the advantages of both electronic displays and conventional paper, including paper-like high contrast appearance, ultra-low power consumption, thinness, flexibility etc. Fabrication of electrophoretic ink by microencapsulating the electrophoretic suspension into individual microcapsules is one way to realize such application. However, there are still some limitations for its commercial application, such as the dispersion and the electrophoretic mobility of charged particles due to the nano-particles aggregation, the barrier property and stability of microcapsule wall due to the suspension releasing, etc. In this presentation, systematic studies on the preparation of electrophoretic particles and microencapsulation by complex coacervation method were carried out to solve the mentioned problems. The obtained microcapsules can be quasi-monolayer coated on ITO/PET substrate and driven by static mode to obtain a matrix character display prototype.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 145 ◽  
Author(s):  
Wei Li ◽  
Li Wang ◽  
Taiyuan Zhang ◽  
Shufa Lai ◽  
Linwei Liu ◽  
...  

As a kind of paper-like display technology, power consumption is a very important index for electrowetting displays (EWDs). In this paper, the influence of driving waveforms on power consumption of the EWDs is analyzed, and a driving waveform with rising gradient and sawtooth wave is designed to reduce the power consumption. There are three stages in the proposed driving waveform. In the initial stage, the driving voltage is raised linearly from the threshold to the maximum value to reduce the invalid power consumption. At the same time, the oil breakup can be prohibited. And then, a section of sawtooth wave is added for suppressing oil backflow. Finally, there is a section of resetting wave to eliminate the influence of charge leakage. Experimental results show that the power consumption of the ultra-low power driving waveform is 1.85 mW, which is about 38.13% lower than that of the conventional used square wave (2.99 mW), when the aperture ratio is 65%.


2020 ◽  
Vol 8 ◽  
Author(s):  
Wei Li ◽  
Li Wang ◽  
Alex Henzen

Electrowetting display (EWD) is a new reflective display technology, which has the advantages of ultra-low power consumption, high contrast, fast response and full-color. However, due to a hysteresis effect, accurate gray scale display of EWDs cannot be achieved, which seriously restricted the display effect and performance of EWDs. In order to reduce the influence of hysteresis effect, a multi waveform adaptive driving scheme was proposed in this paper. Firstly, a multi waveform driving system was designed and implemented by a STM32 master chip and an AD5304 driver chip. The driving system could automatically select different driving waveforms according to the preset switching conditions. Then, different driving waveforms were designed and implemented according to different driving stages of EWDs. Finally, driving waveforms were mapped with each stage of the driving process one by one to realize the adaptive driving of multiple waveforms. The experimental results showed that, compared with the conventional square wave, the maximum hysteresis difference of hysteresis curve could be reduced by 39.19% with the multi waveform driving scheme.


Author(s):  
Dale E. Bockman ◽  
L. Y. Frank Wu ◽  
Alexander R. Lawton ◽  
Max D. Cooper

B-lymphocytes normally synthesize small amounts of immunoglobulin, some of which is incorporated into the cell membrane where it serves as receptor of antigen. These cells, on contact with specific antigen, proliferate and differentiate to plasma cells which synthesize and secrete large quantities of immunoglobulin. The two stages of differentiation of this cell line (generation of B-lymphocytes and antigen-driven maturation to plasma cells) are clearly separable during ontogeny and in some immune deficiency diseases. The present report describes morphologic aberrations of B-lymphocytes in two diseases in which second stage differentiation is defective.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Fitriah Khoirunnisa ◽  
Friska Septiani Silitonga ◽  
Veri Firmansyah

Penelitian ini bertujuan menganalisis kebutuhan petunjuk praktikum berbasis Keterampilan Proses Sains (KPS) untuk mencapai kemampuan merancang eksperimen pada materi kalor reaksi kalorimetri. Penelitian dilakukan terhadap peserta didik kelas XI SMA Negeri 2 Kota Tanjungpinang. Variabel penelitian mencakup analisis kebutuhan bahan ajar dan analisis kesesuaian Kompetensi Inti (KI) dan Kompetensi Dasar (KD). Jenis penelitian yang dilakukan adalah penelitian deskriptif kualitatif. Tahapan pertama dalam penelitian ini adalah menganalisis kebutuhan bahan ajar dengan cara membandingkan dua petunjuk praktikum yang selama ini telah digunakan di sekolah tersebut, ditinjau dari aspek struktur format penulisan, aspek kreativitas, dan aspek keterampilan proses sains yang terdapat dalam petunjuk praktikum. Sehingga didapatkan kesimpulan bahwa petunjuk praktikum yang selama ini digunakan tidak memberikan kesempatan kepada peserta didiknya untuk merancang eksperimen yang telah ditentukan. Tahapan kedua yaitu menganalisis kesesuaian kompetensi inti dan kompetensi dasar, yang bertujuan untuk menentukan indikator pencapaian kompetensi (IPK) yang akan menjadi acuan dalam mengembangkan petunjuk praktikum berbasis keterampilan proses sains. Dari kedua tahapan yang telah dilakukan maka dapat disimpulkan bahwa peserta didik memerlukan petunjuk praktikum yang mampu mengonstruksi pikiran dan mengaktifkan kinerja mereka, sehingga pendekatan Keterampilan Proses Sains menjadi pilihan dalam mengembangkan petunjuk praktikum yang sesuai dengan karakteristik kurikulum 2013.   This research aims to analyze the needs of Science Process Skills based Practical Instruction to achieve the ability to design experiments on the calor of reaction. This research was done to the students of class XI SMA Negeri 2 Tanjungpinang City. Research Variable includes the analysis of the needs of the learning materials and analysis of the suitability of the Core Competence (KI) and Basic Competence (KD). The type of research conducted is descriptive qualitative research. The first stages in this research is to analyze the needs of learning materials by comparing two practical instructions that had been implementing in the school, from the aspects of the structure of writing format, creativity, and science process skills embedded in practical instructions. The conclusion of this research that current practical instructions does not give an opportunity to the participants to design determined experiments. The second stage, namely analyzing the suitability of core competence and basic competence, which aims to determine the indicators of achievement of the competencies (GPA) which will be a reference in developing process skills-based teaching instructions science. Of the two stages that has been done then it can be concluded that learners need practical instructions to construct  thinking and and their performance, so the Science Process Skills approach is an option in developing practical instruction suitable for the characteristics of the curriculum of 2013.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document