scholarly journals Mechanical Properties of Compression Moulded Aggregate-Reinforced Thermoplastic Composite Scrap

2021 ◽  
Vol 5 (11) ◽  
pp. 299
Author(s):  
Julien Moothoo ◽  
Mahadev Bar ◽  
Pierre Ouagne

Recycling of thermoplastic composites has drawn a considerable attention in the recent years. However, the main issue with recycled composites is their inferior mechanical properties compared to the virgin ones. In this present study, an alternative route to the traditional mechanical recycling technique of thermoplastic composites has been investigated with the view to increase mechanical properties of the recycled parts. In this regard, the glass/polypropylene laminate offcuts are cut in different grain sizes and processed in bulk form, using compression moulding. Further, the effect of different grain sizes (i.e., different lengths, widths and thicknesses) and other process-related parameters (such as mould coverage) on the tensile properties of recycled aggregate-reinforced composites have been investigated. The tensile properties of all composite samples are tested according to ISO 527-4 test method and the significance of test results is evaluated according to Student’s t-test and Fisher’s F-test respectively. It is observed that the tensile moduli of the recycled panels are close to the equivalent quasi-isotropic continuous fibre-reinforced reference laminate while there is a noteworthy difference in the strengths of the recycled composites. At this stage, the manufactured recycled composites show potential for stiffness-driven application.

1994 ◽  
Vol 3 (6) ◽  
pp. 096369359400300 ◽  
Author(s):  
S. Ramakrishna ◽  
H. Hamada ◽  
N.K. Cuong

It has been shown that knitted fabric reinforced thermoplastic composites can be fabricated by compression moulding in two ways namely, film stacking method and co-knitted fabric method. The processability of co-knitted fabric method was better than the film stacking method. Tensile properties in the wale direction of the knitted fabric were higher than those of the course direction.


2014 ◽  
Vol 695 ◽  
pp. 56-59
Author(s):  
A.R.H. Fatimah ◽  
A.Ghani Supri ◽  
Z. Firuz

Natural fillers fulfill most requirements needed to replace synthethic fillers in thermoplastic composites. However, some disadvantages appear when natural fillers are used for composites. The poor compatibility between the hydrophilic fillers with the hydrophobic polymer matrix leads to a weak interface and hence, thus poor mechanical properties. In this research, caprolactam-maleic anhydride (CL-MAH) was used as the compatibilizer (6wt%) and the effect of compatibilizer on the composites was studied on mechanical properties and swelling behavior of RHDPE/EVA/Taro. The tensile strength for RHDPE/EVA/Taro composites decreased while increasing the filler loadings but adding caprolactam-maleic anhydride in the composite significantly improved the tensile properties. The swelling behavior results indicated that increased in Taro filler and addition of CL-MAH will increase the mass swell of the composites.


2020 ◽  
Vol 858 ◽  
pp. 78-83
Author(s):  
Dae Won Kim ◽  
Jun Park ◽  
Chul Kyu Jin ◽  
Hyung Yoon Seo ◽  
Chung Gil Kang

Carbon fabric-reinforced thermoplastic (CFRP) composites, fortified with carbon fiber prepreg and epoxy base materials, have been mainly used for body parts for weight lightening, advanced high strength, and impact absorption In the current automotive industry However, as recycling of the composite material is required, attempts have been made to manufacture body parts using a thermoplastic polymeric material as a base substance. In order to produce various types of body parts by impregnating a liquid thermoplastic material into carbon fabric preform in methods of manufacturing a carbon fiber-reinforced thermoplastic composite material (CFRTP), it is important to understand the effect of the impregnation process parameters (time, temperature, pressing force) on the mechanical properties of the composite material. Therefore, in this study, the influence of impregnation process parameters on the mechanical properties of CFRTP is proposed. In addition, this paper presents the problems and solutions when polymeric materials are impregnated in carbon fabric.


2011 ◽  
Vol 217-218 ◽  
pp. 1683-1688 ◽  
Author(s):  
Wei Tian ◽  
Yan Qing Li ◽  
Zhao Hang Feng ◽  
Cheng Yan Zhu

The preforms were woven by the co-yarns which were consisted of GF, PP and PET. Then the co-yarns were manufactured into hybrid thermoplastic composites. The parameters of the forming process were studied by analyzing the tensile properties of the composites. The results show that the composite holds the best tensile properties when the pressure is 5MPa, the packing temperature is 190°C, and the holding time is 30 min. The existing of a second pressure of 10 MPa at 150°C for 3 min will help to improve the capacity of the load supporting for the GF/PET thermoplastic composites


2016 ◽  
Vol 30 (12) ◽  
pp. 1693-1712 ◽  
Author(s):  
Suong Van Hoa ◽  
Minh Duc Hoang ◽  
Jeff Simpson

Automated fibre placement (AFP) is a relatively new process for the manufacturing of composite structures. Among many attractive features, it provides high-speed of material deposition, more repeatability in terms of quality of the part, less labour intensive (as compared with traditional methods of manufacturing such as Hand Lay-Up), less waste and the ability to transition more seamlessly from design to manufacturing. AFP can be used to process both thermoset composites and thermoplastic composites. Thermoplastic composites processing holds many potential benefits. This is because if the process is done right in producing parts with good quality, it is fast since it does not require a second process such as curing in an autoclave or oven. For the purpose of comparison of performance and for design, it is necessary to determine the mechanical properties of laminates made using this process. However, there are challenges in making flat coupons for the purpose of testing for mechanical properties. This article presents these challenges and the procedure developed to make flat laminates using a simple AFP machine. Mechanical properties of these laminates are also determined and compared with those obtained from laminates made using conventional autoclave moulding.


2011 ◽  
Vol 366 ◽  
pp. 36-39 ◽  
Author(s):  
Chang Yong Li ◽  
Pin Nie ◽  
Feng Lan Li

Experiments were conducted to study the mechanical properties and water permeability of recycled aggregate porous concrete. The orthogonal test was designed considering four parameters including water to cement ratio, cement content, grain series of recycled aggregate and aggregate to cement ratio, each parameter was set at three levels. Performances of porous concrete were measured such as cubic compressive strength, flexural strength, continuous porosity and water penetration coefficient. Test results are analyzed on the basis of orthogonal test method, the optimum proportions corresponding to every test parameters are given out. The ranges of every test parameters are also proposed. It provides a reference for constructing porous concrete roads by recycled aggregate made of old concrete from dismantled buildings.


2020 ◽  
Vol 8 (2) ◽  
pp. 68-129
Author(s):  
J. Müssig ◽  
N. Graupner

Due to the increasing discussion about sustainable and CO2-reduced materials, the demand for cellulose-based fibres as a reinforcing component in thermoplastic composites has increased considerably. Knowledge about the possibilities of modifying fibres for improved adhesion to the plastic matrix is essential in this context. The fibre/matrix adhesion in cellulose fibre-reinforced polymers is of considerable importance for the design of composite materials. Unfortunately, there are no standards for many essential methods to determine fibre/matrix adhesion. In this review article, various methods for measuring the interfacial shear strength between fibres and matrix, as an indirect characterisation of adhesion, are presented. Additionally, a brief overview of different methods for surface modification of cellulose fibres to improve the adhesion to a thermoplastic matrix is given. This review focuses on the fact that the parameters for the production of test specimens as well as the test method itself can vary considerably from study to study. Because of this, the comparison of data from different publications is not always possible. Therefore, in this article, the main influencing factors and differences in the methods are presented and discussed. Based on a systematic review and a clear description and discussion of the methods, the reader is given a broad basis for a better understanding of characteristic values for fibre/matrix adhesion.


2015 ◽  
Vol 651-653 ◽  
pp. 350-355 ◽  
Author(s):  
A. Margossian ◽  
Sylvain Bel ◽  
Luciano Avila Gray ◽  
R. Hinterhölzl

The ability of a draping simulation to accurately predict the outcome of a forming process mainly depends on the accuracy of the input parameters. For pre-impregnated composites, material must be characterised in the same conditions as forming occurs, i.e. in temperature regulated environment. Given the issues encountered while testing specimens enclosed in a thermal chamber and mounted on a tensile testing machine, new test methods have to be developed. A new approach using a Dynamic Mechanical Analysis system is presented for the investigation of tensile properties perpendicular to fibre direction of unidirectional pre-impregnated composites. Analyses are focused on a unidirectional carbon fibre thermoplastic tape reinforced polyamide 6 in its molten state. Quasi-static tests are performed at forming temperature for different loading rates with specimens of different geometries in order to assess the reproducibility of the test method.


2012 ◽  
Vol 504-506 ◽  
pp. 243-248 ◽  
Author(s):  
Peng Wang ◽  
Nahiene Hamila ◽  
Philippe Boisse

The Continuous Fibre Reinforcements and Thermoplastic resin (CFRTP) are widely employed in the prepreg processes. Currently, the most used thermoplastic resins in aeronautics are PPS (polyphenylene sulfide) and PEEK (Polyetheretherketone). They present many advantages on their mechanical properties. However, these mechanical properties depend strongly upon the thermoforming conditions, especially the intraply shearing. In order to improve and complete the understanding about the in-plane shear behavior of thermoplastic composite materials in their forming processes, the thermo-mechanical analysis of PPS/carbon and PEEK/carbon commingled fabrics at different forming temperatures are performed by using the bias-extension tests. The experimental data leads to significant difference on the in-plane shear behavior under different temperature, as well as the wrinkles can be noted in certain thermoforming conditions. Therefore, in order to predict the feasible forming conditions and optimize the important forming parameters of the thermoplastic composites, the in-plan shear behaviors in function of temperature will be integrated into our numerical model to carry out the numerical simulations of thermoforming processes.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
B. Senthil Kumar ◽  
Subramanian Balachandar

A thermoplastic composite is produced from polypropylene matrix with glass fibre reinforcement. These types of composite materials are ecofriendly nature due to their reusability after their lifetime. These polymer composites are alternative to heavy metals that are currently being used in many non-structural applications. In spite of being ecofriendly nature, the range of applications is limited due to poor mechanical properties as compared with thermoset matrix composite. Hence an attempt was made in this work to improve the mechanical property such as flexural property of Glass/PP hybrid woven composites by optimizing the parameters during compression moulding, such as mould pressure, mould temperature, and holding time using Box-Behnken experimental design. Each process variables were taken in 3 different levels. Second order polynomial model with quadratic effect was chosen. The optimum combination of process parameters was obtained by using contour diagram. The levels of importance of process parameters on flexural properties were determined by using analysis of variance (ANOVA). The variation of flexural property with cited process parameters was mathematically modelled using the regression analysis.


Sign in / Sign up

Export Citation Format

Share Document