scholarly journals Stereophotogrammetry of clouds observed during T-REX

2021 ◽  
Author(s):  
Ulrike Romatschke ◽  
Vanda Grubišić

Stereophotogrammetric images collected during the Terrain-induced Rotor Experiment (T-REX), which took place in Owens Valley, California, in the spring of 2006, were used to track clouds and cloud fragments in space and time. We explore how photogrammetric data complements other instruments deployed during T-REX, and how it supports T-REX objectives to study the structure and dynamics of atmospheric lee waves and rotors. Algorithms for camera calibration, automatic feature matching, and 3D positioning of clouds were developed which enabled the study of cloud motion in highly turbulent mountain wave scenarios.The dynamic properties obtained with photogrammetric tools compare well with data collected by other T-REX instruments. In a mild mountain wave event, the whole life cycle of clouds moving through a lee wave crest was tracked in space and time showing upward and downward motion at the upstream and downstream side of the wave crest, respectively. During strong mountain wave events the steepening of the first lee wave as it developed into a hydraulic jump was tracked and quantified. Vertical cloud motion increased from ~2 m/s to 4 m/s and horizontal cloud motion decreased from 20 m/s to 16 m/s with the development of the hydraulic jump. Clouds at distinct vertical layers were tracked in other mountain wave events: moderate southerly flow was observed in the valley (~8 m/s), westerly motion of the same magnitude at the Sierra Nevada mountain crest level, and westerlies with speeds of over 20 m/s at even higher altitudes.

2008 ◽  
Vol 136 (2) ◽  
pp. 757-768 ◽  
Author(s):  
Vanda Grubišić ◽  
Brian J. Billings

Abstract This note presents a satellite-based climatology of the Sierra Nevada mountain-wave events. The data presented were obtained by detailed visual inspection of visible satellite imagery to detect mountain lee-wave clouds based on their location, shape, and texture. Consequently, this climatology includes only mountain-wave events during which sufficient moisture was present in the incoming airstream and whose amplitude was large enough to lead to cloud formation atop mountain-wave crests. The climatology is based on data from two mountain-wave seasons in the 1999–2001 period. Mountain-wave events are classified in two types according to cloud type as lee-wave trains and single wave clouds. The frequency of occurrence of these two wave types is examined as a function of the month of occurrence (October–May) and region of formation (north, middle, south, or the entire Sierra Nevada range). Results indicate that the maximum number of mountain-wave events in the lee of the Sierra Nevada occurs in the month of April. For several months, including January and May, frequency of wave events displays substantial interannual variability. Overall, trapped lee waves appear to be more common, in particular in the lee of the northern sierra. A single wave cloud on the lee side of the mountain range was found to be a more common wave form in the southern Sierra Nevada. The average wavelength of the Sierra Nevada lee waves was found to lie between 10 and 15 km, with a minimum at 4 km and a maximum at 32 km.


2007 ◽  
Vol 64 (12) ◽  
pp. 4178-4201 ◽  
Author(s):  
Vanda Grubišić ◽  
Brian J. Billings

Abstract A large-amplitude lee-wave rotor event observationally documented during Sierra Rotors Project Intensive Observing Period (IOP) 8 on 24–26 March 2004 in the lee of the southern Sierra Nevada is examined. Mountain waves and rotors occurred over Owens Valley in a pre-cold-frontal environment. In this study, the evolution and structure of the observed and numerically simulated mountain waves and rotors during the event on 25 March, in which the horizontal circulation associated with the rotor was observed as an opposing, easterly flow by the mesonetwork of surface stations in Owens Valley, are analyzed. The high-resolution numerical simulations of this case, performed with the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) run with multiple nested-grid domains, the finest grid having 333-m horizontal spacing, reproduced many of the observed features of this event. These include small-amplitude waves above the Sierra ridge decoupled from thermally forced flow within the valley, and a large-amplitude mountain wave, turbulent rotor, and strong westerlies on the Sierra Nevada lee slopes during the period of the observed surface easterly flow. The sequence of the observed and simulated events shows a pronounced diurnal variation with the maximum wave and rotor activity occurring in the early evening hours during both days of IOP 8. The lee-wave response, and thus indirectly the appearance of lee-wave rotor during the core IOP 8 period, is found to be strongly controlled by temporal changes in the upstream ambient wind and stability profiles. The downstream mountain range exerts strong control over the lee-wave horizontal wavelength during the strongest part of this event, thus exhibiting the control over the cross-valley position of the rotor and the degree of strong downslope wind penetration into the valley.


2009 ◽  
Vol 66 (5) ◽  
pp. 1205-1228 ◽  
Author(s):  
Vanda Grubišić ◽  
Ivana Stiperski

Abstract Lee-wave resonance over double bell-shaped obstacles is investigated through a series of idealized high-resolution numerical simulations with the nonhydrostatic Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model using a free-slip lower boundary condition. The profiles of wind speed and stability as well as terrain derive from observations of lee-wave events over the Sierra Nevada and Inyo Mountains from the recently completed Terrain-Induced Rotor Experiment (T-REX). Numerical experiments show that double bell-shaped obstacles promote trapped lee waves that are in general shorter than those excited by an isolated ridge. While the permissible trapped lee-wave modes are determined by the upstream atmospheric structure, primarily vertical wind shear, the selected lee-wave wavelengths for two obstacles that are close or equal in height are dictated by the discrete terrain spectrum and correspond to higher harmonics of the primary orographic wavelength, which is equal to the ridge separation distance. The exception is the smallest ridge separation distance examined, one that corresponds to the Owens Valley width and is closest to the wavelength determined by the given upstream atmospheric structure, for which the primary lee-wave and orographic wavelengths were found to nearly coincide. The influence two mountains exert on the overall lee-wave field is found to persist at very large ridge separation distances. For the nonlinear nonhydrostatic waves examined, the ridge separation distance is found to exert a much stronger control over the lee-wave wavelengths than the mountain half-width. Positive and negative interferences of lee waves, which can be detected through their imprint on wave drag and wave amplitudes, were found to produce appreciable differences in the flow structure mainly over the downstream peak, with negative interference characterized by a highly symmetric flow pattern leading to a low drag state.


1971 ◽  
Vol 61 (5) ◽  
pp. 1413-1432 ◽  
Author(s):  
Frank J. Gumper ◽  
Christopher Scholz

abstract Microseismicity, composite focal-mechanism solutions, and previously-published focal parameter data are used to determine the current tectonic activity of the prominent zone of seismicity in western Nevada and eastern California, termed the Nevada Seismic Zone. The microseismicity substantially agrees with the historic seismicity and delineates a narrow, major zone of activity that extends from Owens Valley, California, north past Dixie Valley, Nevada. Focal parameters indicate that a regional pattern of NW-SE tension exists for the western Basin and Range and is now producing crustal extension within the Nevada Seismic Zone. An eastward shift of the seismic zone along the Excelsior Mountains and left-lateral strike-slip faulting determined from a composite focal mechanism indicate transform-type faulting between Mono Lake and Pilot Mountain. Based on these results and other data, it is suggested that the Nevada Seismic Zone is caused by the interaction of a westward flow of mantle material beneath the Basin and Range Province with the boundary of the Sierra Nevada batholith.


1934 ◽  
Vol 24 (4) ◽  
pp. 345-384 ◽  
Author(s):  
Vincent P. Gianella ◽  
Eugene Callaghan

Summary The Cedar Mountain, Nevada, earthquake took place at about 10h 10m 04s p.m., December 20, 1932. It was preceded by a foreshock noted locally and followed by thousands of aftershocks, which were reported as still continuing in January 1934. No lives were lost and there was very little damage. The earthquake originated in southwest central Nevada, east of Mina. A belt of rifts or faults in echelon lies in the valley between Gabbs Valley Range and Pilot Mountains on the west and Cedar Mountain and Paradise Range on the east. The length of this belt is thirty-eight miles in a northwesterly direction, and the width ranges from four to nine miles. The rifts consist of zones of fissures which commonly reveal vertical displacement and in a number of places show horizontal displacement. The length of the rifts ranges from a few hundred feet to nearly four miles, and the width may be as much as 400 feet. The actual as well as indicated horizontal displacement is represented by a relative southward movement of the east side of each rift. The echelon pattern of the rifts within the rift area indicates that the relative movement of the adjoining mountain masses is the same. The direction of relative horizontal movement corresponds to that along the east front of the Sierra Nevada at Owens Valley and on the San Andreas rift.


1980 ◽  
Vol 70 (5) ◽  
pp. 1557-1572
Author(s):  
J. D. VanWormer ◽  
Alan S. Ryall

abstract Precise epicentral determinations based on local network recordings are compared with mapped faults and volcanic features in the western Great Basin. This region is structurally and seismically complex, and seismogenic processes vary within it. In the area north of the rupture zone of the 1872 Owens Valley earthquake, dispersed clusters of epicenters agree with a shatter zone of faults that extend the 1872 breaks to the north and northwest. An area of frequent earthquake swarms east of Mono Lake is characterized by northeast-striking faults and a crustal low-velocity zone; seismicity in this area appears to be related to volcanic processes that produced thick Pliocene basalt flows in the Adobe Hills and minor historic activity in Mono Lake. In the Garfield Hills between Walker Lake and the Excelsior Mountains, there is some clustering of epicenters along a north-trending zone that does not correlate with major Cenozoic structures. In an area west of Walker Lake, low seismicity supports a previous suggestion by Gilbert and Reynolds (1973) that deformation in that area has been primarily by folding and not by faulting. To the north, clusters of earthquakes are observed at both ends of a 70-km-long fault zone that forms the eastern boundary of the Sierra Nevada from Markleeville to Reno. Clusters of events also appear at both ends of the Dog Valley Fault in the Sierra west of Reno, and at Virginia City to the east. Fault-plane solutions for the belt in which major earthquakes have occurred in Nevada during the historic period (from Pleasant Valley in the north to the Excelsior Mountains on the California-Nevada Border) correspond to normaloblique slip and are similar to that found by Romney (1957) for the 1954 Fairview Peak shock. However, mechanisms of recent moderate earthquakes within the SNGBZ are related to right- or left-lateral slip, respectively, on nearly vertical, northwest-, or northeast-striking planes. These mechanisms are explained by a block faulting model of the SNGBZ in which the main fault segments trend north, have normal-oblique slip, and are offset or terminated by northwest-trending strike-slip faults. This is supported by the observation that seismicity during the period of observation has been concentrated at places where major faults terminate or intersect. Anomalous temporal variations, consisting of a general decrease in seismicity in the southern part of the SNGBZ from October 1977 to September 1978, followed by a burst of moderate earthquakes that has continued for more than 18 months, is suggestive of a pattern that several authors have identified as precursory to large earthquakes. The 1977 to 1979 variations are particularly noteworthy because they occurred over the entire SNGBZ, indicating a regional rather than local cause for the observed changes.


1973 ◽  
Vol 63 (2) ◽  
pp. 571-586
Author(s):  
Dean S. Carder

abstract An experiment to investigate the major earth structure along a profile from the Nevada Test Site (NTS) to the Pacific Ocean across two sections of the Sierra Nevada, one in the Kings Canyon area and the other which includes Huntington Lake, was undertaken by the Earthquake Mechanism Laboratory of the National Oceanic and Atmospheric Administration (NOAA). Instrumental coverage included 35 temporary and seven permanent seismographs. Energy sources included four high-yield and 20 intermediate- to low-yield nuclear explosions under the NTS, one high-yield explosion under Amchitka Island of Alaska, two earthquakes near Santa Rosa, and one earthquake in Monterey Bay. An upper-mantle speed of 7.9 km/sec satisfied most of the observed data except under the Sierra where the velocity was somewhat lower than this. An earthquake in Monterey Bay helped to close the west end of the profile. The Sierra Nevada “root” in large part can be attributed to relatively low upper-mantle speed under the Sierras (estimated at 7.64 km/sec) which extends to an indefinite depth and which possibly may serve as lens to refract late arriving high-energy waves to coastal areas. Crustal thickness from the Sierra foothills eastward varies from 25 to 35 km, the thinner portion under the Sierra crest and Owens Valley, near Independence, and the thicker sections under the western Sierra and the basin ranges east of Owens Valley. West of Fresno, the crust thins more or less gradually to about 20 km in thickness under the western coast ranges. This profile contrasts with that from an earlier study, across the Central Valley south of Stockton, where no such thinning under the Central Valley was observed. The sub-Sierra crust east of Fresno is somewhat complicated. Low-angle thrusting toward the east is indicated.


Author(s):  
Egill Hauksson ◽  
Brian Olson ◽  
Alex Grant ◽  
Jennifer R. Andrews ◽  
Angela I. Chung ◽  
...  

Abstract The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal-faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent plate boundary. Foreshocks began on 22 June 2020; the largest Mw 4.7 foreshock occurred at ∼6  km depth, with primarily normal faulting, followed ∼40  hr later on 24 June 2020 by an Mw 5.8 mainshock at ∼7  km depth. The sequence caused overlapping ruptures across a ∼0.25  km2 area, extended to ∼4  km2, and culminated in an ∼25  km2 aftershock area. The mainshock was predominantly normal faulting, with a strike of 330° (north-northwest), dipping 60°–65° to the east-northeast. Comparison of background seismicity and 2020 Ridgecrest aftershock rates showed that this earthquake was not an aftershock of the Ridgecrest mainshock. The Mw–mB relationship and distribution of ground motions suggest typical rupture speeds. The aftershocks form a north-northwest-trending, north-northeast-dipping, 5 km long distribution, consistent with the rupture length estimated from analysis of regional waveform data. No surface rupture was reported along the 1872 scarps from the 2020 Mw 5.8 mainshock, although, the dipping rupture zone of the Mw 5.8 mainshock projects to the surface in the general area. The mainshock seismic energy triggered rockfalls at high elevations (>3.0  km) in the Sierra Nevada, at distances of 8–20 km, and liquefaction along the western edge of Owens Lake. Because there were ∼30% fewer aftershocks than for an average southern California sequence, the aftershock forecast probabilities were lower than expected. ShakeAlert, the earthquake early warning system, provided first warning within 9.9 s, as well as subsequent updates.


2012 ◽  
Vol 51 (7) ◽  
pp. 1333-1352 ◽  
Author(s):  
Peter Sheridan ◽  
Simon Vosper

AbstractThe downslope windstorm during intensive observation period (IOP) 6 was the most severe that was detected during the Terrain-Induced Rotor Experiment (T-REX) in Owens Valley in the Sierra Nevada of California. Cross sections of vertical motion in the form of a composite constructed from aircraft data spanning the depth of the troposphere are used to link the winds experienced at the surface to the changing structure of the mountain-wave field aloft. Detailed analysis of other observations allows the role played by a passing occluded front, associated with the rapid intensification (and subsequent cessation) of the windstorm, to be studied. High-resolution, nested modeling using the Met Office Unified Model (MetUM) is used to study qualitative aspects of the flow and the influence of the front, and this modeling suggests that accurate forecasting of the timing and position of both the front and strong mountaintop winds is crucial to capture the wave dynamics and accompanying windstorm. Meanwhile, far ahead of the front, simulated downslope winds are shallow and foehnlike, driven by the thermal contrast between the upstream and valley air mass. The study also highlights the difficulties of capturing the detailed interaction of weather systems with large and complex orography in numerical weather prediction.


Sign in / Sign up

Export Citation Format

Share Document