dna acquisition
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 3)

2020 ◽  
Author(s):  
Benjamin L. Springstein ◽  
Fabian Nies ◽  
Tal Dagan

AbstractLateral DNA transfer plays an important role in the evolution of genetic diversity in prokaryotes. DNA acquisition via transformation involves the uptake of DNA from the environment. The ability of recipient cells to actively transport DNA into the cytoplasm – termed natural competence – depends on the presence of type IV pili and competence proteins. Natural competence has been described in cyanobacteria for several organisms including unicellular and filamentous species. However, the presence of natural competence in ramified cyanobacteria, which are considered the peak of cyanobacterial morphological complexity, remains unknown. Here we show that ramified cyanobacteria harbour the genes essential for natural competence and experimentally demonstrate natural competence in the ramified cyanobacterium Chlorogloeopsis fritschii PCC 6912 (hereafter Chlorogloeopsis). Searching for homologs to known natural competence genes in ramified cyanobacteria showed that these genes are conserved in the majority of tested isolates. Experimental validation of natural competence using several alternative protocols demonstrates that Chlorogloeopsis could be naturally transformed with a replicative plasmid. Our results show that natural competence is a common trait in ramified cyanobacteria and that natural transformation is likely to play an important role in cyanobacteria evolution.ImportanceCyanobacteria are crucial players in the global biogeochemical cycles where they contribute to CO2- and N2-fixation. Their main ecological significance is the oxygen-producing photosynthetic apparatus that contributes to contemporary food chains. Ramified cyanobacteria form true-branching and multiseriate cell filament structures that represent a peak of prokaryotic multicellularity. Species in that group inhabit fresh and marine water habitats, thermal springs, arid environments, as well as endolithic and epiphytic habitats. Here we show that ramified cyanobacteria harbor the mechanisms required for DNA acquisition via natural transformation. The prevalence of mechanisms for natural uptake of DNA has implications for the role of DNA acquisition in the evolution of cyanobacteria. Furthermore, presence of mechanisms for natural transformation in ramified cyanobacteria opens up new possibilities for genetic modification of ramified cyanobacteria.


2020 ◽  
Author(s):  
Robert M. Cooper ◽  
Jeff Hasty

AbstractCRISPR-Cas systems are prokaryotic immune systems that have proliferated widely not only in bacteria and archaea, but also much more recently, in human biological research and applications. Much work to date has utilized synthetic sgRNAs along with the CRISPR nuclease Cas9, but the discovery of array-processing nucleases now allows the use of more compact, natural CRISPR arrays in heterologous hosts, in addition to organisms with endogenous systems. Unfortunately, the construction of multiplex natural CRISPR arrays remains technically challenging, expensive, and/or time-consuming. This limitation hampers research involving natural CRISPR arrays in both native and heterologous hosts. To address this problem, we present a method to assemble CRISPR arrays that is simple, rapid, affordable, and highly scalable – we assembled 9-spacer arrays with one day’s worth of work. We used this method to harness the endogenous CRISPR system of the highly competent bacterium Acinetobacter baylyi, showing that while single spacers are not always completely effective at blocking DNA acquisition through natural competence, multiplex natural CRISPR arrays enable both nearly complete DNA exclusion and genome editing, including with multiple targets for both. In addition to demonstrating a CRISPR array assembly method that will benefit a variety of applications, we also find a potential bet-hedging strategy for balancing CRISPR defense vs. DNA acquisition in naturally competent A. baylyi.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Munck ◽  
Ravi U. Sheth ◽  
Daniel E. Freedberg ◽  
Harris H. Wang

AbstractThe flow of genetic material between bacteria is central to the adaptation and evolution of bacterial genomes. However, our knowledge about DNA transfer within complex microbiomes is lacking, with most studies of horizontal gene transfer (HGT) relying on bioinformatic analyses of genetic elements maintained on evolutionary timescales or experimental measurements of phenotypically trackable markers. Here, we utilize the CRISPR-Cas spacer acquisition process to detect DNA acquisition events from complex microbiota in real-time and at nucleotide resolution. In this system, an E. coli recording strain is exposed to a microbial sample and spacers are acquired from transferred plasmids and permanently stored in genomic CRISPR arrays. Sequencing and analysis of acquired spacers enables identification of the transferred plasmids. This approach allowed us to identify individual mobile elements without relying on phenotypic markers or post-transfer replication. We found that HGT into the recording strain in human clinical fecal samples can be extensive and is driven by different plasmid types, with the IncX type being the most actively transferred.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jasmine Martinez ◽  
Jennifer S. Fernandez ◽  
Christine Liu ◽  
Amparo Hoard ◽  
Anthony Mendoza ◽  
...  

AbstractAcinetobacter baumannii is a feared, drug-resistant pathogen, characterized by its ability to resist extreme environmental and nutrient-deprived conditions. Previously, we showed that human serum albumin (HSA) can increase foreign DNA acquisition specifically and alter the expression of genes associated with pathogenicity. Moreover, in a recent genome-wide transcriptomic study, we observed that pleural fluid (PF), an HSA-containing fluid, increases DNA acquisition, can modulate cytotoxicity, and control immune responses by eliciting changes in the A. baumannii metabolic profile. In the present work, using more stringent criteria and focusing on the analysis of genes related to pathogenicity and response to stress, we analyzed our previous RNA-seq data and performed phenotypic assays to further explore the impact of PF on A. baumannii’s microbial behavior and the strategies used to overcome environmental stress. We observed that PF triggered differential expression of genes associated with motility, efflux pumps, antimicrobial resistance, biofilm formation, two-component systems (TCSs), capsule synthesis, osmotic stress, and DNA-damage response, among other categories. Phenotypic assays of A. baumannii A118 and two other clinical A. baumannii strains, revealed differences in their responses to PF in motility, biofilm formation, antibiotic susceptibility, osmotic stress, and outer membrane vesicle (OMV) production, suggesting that these changes are strain specific. We conclude that A. baumannii’s pathoadaptive responses is induced by HSA-containing fluids and must be part of this bacterium armamentarium to persist in hostile environments.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Karthik Hullahalli ◽  
Marinelle Rodrigues ◽  
Uyen Thy Nguyen ◽  
Kelli Palmer

2019 ◽  
Author(s):  
Noémie Matthey ◽  
Sandrine Stutzmann ◽  
Candice Stoudmann ◽  
Nicolas Guex ◽  
Christian Iseli ◽  
...  

AbstractNatural competence for transformation is a primary mode of horizontal gene transfer (HGT). Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. And while it is known that transformation contributes to evolution and pathogen emergence in bacteria, there are still questions regarding the general prevalence of non-degraded DNA with sufficient coding capacity. In this context, we previously showed that the naturally competent bacterium Vibrio cholerae uses its type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors under chitin-colonizing conditions. We therefore sought to further explore the role of the T6SS in acquiring DNA, the condition of the DNA released through T6SS-mediated killing versus passive cell lysis, and the extent of the transfers that occur due to these conditions. To do this, we herein measured the frequency and the extent of genetic exchanges in bacterial co-cultures on competence-inducing chitin under various DNA-acquisition conditions. We show that competent V. cholerae strains acquire DNA fragments with an average and maximum length exceeding 50 kbp and 150 kbp, respectively, and that the T6SS is of prime importance for such HGT events. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters HGT and that the coding capacity of the exchanged genetic material is sufficient to significantly accelerate bacterial evolution.Significance StatementDNA shuffled from one organism to another in an inheritable manner is a common feature of prokaryotes. It is a significant mechanism by which bacteria acquire new phenotypes, for example by first absorbing foreign DNA and then recombining it into their genome. In this study, we show the remarkable extent of the exchanged genetic material, frequently exceeding 150 genes in a seemingly single transfer event, in Vibrio cholerae. We also show that to best preserve its length and quality, bacteria mainly acquire this DNA by killing adjacent, healthy neighbors then immediately absorbing the released DNA before it can be degraded. These new insights into this prey-killing DNA acquisition process shed light on how bacterial species evolve in the wild.


2019 ◽  
Vol 53 (4) ◽  
pp. 483-490 ◽  
Author(s):  
German M. Traglia ◽  
Kori Place ◽  
Cristian Dotto ◽  
Jennifer S. Fernandez ◽  
Sabrina Montaña ◽  
...  

2019 ◽  
Vol 93 (3) ◽  
pp. 183-187 ◽  
Author(s):  
Jasmine Martinez ◽  
Christine Liu ◽  
Nyah Rodman ◽  
Jennifer S. Fernandez ◽  
Claudia Barberis ◽  
...  

2018 ◽  
Vol 115 (25) ◽  
pp. E5776-E5785 ◽  
Author(s):  
Charles Y. Wang ◽  
Nisha Patel ◽  
Wei-Yun Wholey ◽  
Suzanne Dawid

The opportunistic pathogenStreptococcus pneumoniae(pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called “bacteriocins.” Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systemscomandblp, respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system’s signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(−)]. Contrary to the classical paradigm, it was previously shown that BlpAB(−) strains can activateblpthrough ComAB-mediated secretion of theblppheromone during brief periods of competence. To better understand the full extent ofcom-blpcrosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of thecompheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(−) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(−) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Karthik Hullahalli ◽  
Marinelle Rodrigues ◽  
Uyen Thy Nguyen ◽  
Kelli Palmer

ABSTRACT Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis , since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack c lustered r egularly i nterspaced s hort p alindromic r epeats (CRISPR) and C RISPR- as sociated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this “CRISPR tolerance.” We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense. IMPORTANCE CRISPR-Cas has provided a powerful toolkit to manipulate bacteria, resulting in improved genetic manipulations and novel antimicrobials. These powerful applications rely on the premise that CRISPR-Cas chromosome targeting, which leads to double-stranded DNA breaks, is lethal. In this study, we show that chromosomal CRISPR targeting in Enterococcus faecalis is transiently nonlethal. We uncover novel phenotypes associated with this “CRISPR tolerance” and, after determining its genetic basis, develop a genome-editing platform in E. faecalis with negligible off-target effects. Our findings reveal a novel strategy exploited by a bacterial pathogen to cope with CRISPR-induced conflicts to more readily accept DNA, and our robust CRISPR editing platform will help simplify genetic modifications in this organism.


Sign in / Sign up

Export Citation Format

Share Document