scholarly journals Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jasmine Martinez ◽  
Jennifer S. Fernandez ◽  
Christine Liu ◽  
Amparo Hoard ◽  
Anthony Mendoza ◽  
...  

AbstractAcinetobacter baumannii is a feared, drug-resistant pathogen, characterized by its ability to resist extreme environmental and nutrient-deprived conditions. Previously, we showed that human serum albumin (HSA) can increase foreign DNA acquisition specifically and alter the expression of genes associated with pathogenicity. Moreover, in a recent genome-wide transcriptomic study, we observed that pleural fluid (PF), an HSA-containing fluid, increases DNA acquisition, can modulate cytotoxicity, and control immune responses by eliciting changes in the A. baumannii metabolic profile. In the present work, using more stringent criteria and focusing on the analysis of genes related to pathogenicity and response to stress, we analyzed our previous RNA-seq data and performed phenotypic assays to further explore the impact of PF on A. baumannii’s microbial behavior and the strategies used to overcome environmental stress. We observed that PF triggered differential expression of genes associated with motility, efflux pumps, antimicrobial resistance, biofilm formation, two-component systems (TCSs), capsule synthesis, osmotic stress, and DNA-damage response, among other categories. Phenotypic assays of A. baumannii A118 and two other clinical A. baumannii strains, revealed differences in their responses to PF in motility, biofilm formation, antibiotic susceptibility, osmotic stress, and outer membrane vesicle (OMV) production, suggesting that these changes are strain specific. We conclude that A. baumannii’s pathoadaptive responses is induced by HSA-containing fluids and must be part of this bacterium armamentarium to persist in hostile environments.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
J Christian Belisario ◽  
Hiu Ham Lee ◽  
Harshani Luknauth ◽  
Nathan W. Rigel ◽  
Luis R. Martinez

Acinetobacter baumannii has emerged as a significant opportunistic Gram-negative pathogen and causative agent of nosocomial pneumonia especially in immunocompromised individuals in intensive care units. Recent advances to understand the contribution and function of A. baumannii virulence factors in its pathogenesis have begun to elucidate how this bacterium interacts with immune cells and its interesting mechanisms for multi-antibiotic resistance. Taking advantage of the availability of the A. baumannii AB5075 transposon mutant library, we investigated the impact of the A. baumannii Clp genes, which encode for a chaperone-protease responsible for the degradation of misfolded proteins, on bacterial virulence in a model of pneumonia using C57BL/6 mice and survival within J774.16 macrophage-like cells. Clp-protease A. baumannii mutants exhibit decreased virulence in rodents, high phagocytic cell-mediated killing and reduced biofilm formation. Capsular staining showed evidence of encapsulation in A. baumannii AB5075 and Clp-mutant strains. Surprisingly, clpA and clpS mutants displayed irregular cell morphology, which may be important in the biofilm structural deficiencies observed in these strains. Interestingly, clpA showed apical-like growth, proliferation normally observed in filamentous fungi. These findings provide new information regarding A. baumannii pathogenesis and may be important for the development of therapies intended at reducing morbidity and mortality associated with this remarkable pathogen.


2018 ◽  
Vol 12 (2) ◽  
pp. 4-9
Author(s):  
Maherun Nesa ◽  
Shaheda Anwar ◽  
Ahmed Abu Saleh

Background: Acinetobacter baumannii is responsible for nosocomial infections which are related to biofilm formation of this pathogen. Biofilm formation helps the bacteria in surviving stressed environmental conditions and bacteria growing in biofilms are resistant to most of the commonly used antibiotics. Objectives: The objective of this study was to detect A. baumannii, to see antibiotic sensitivity and biofilm formation in different clinical samples. Methods: Total 108 Acinetobacter spp. were collected from different clinical samples which were identified by conventional microbiological procedures. Out of 108 Acinetobacter spp, 85 were identified as A. baumannii by polymerase chain reaction by detecting blaOXA-51 gene which is intrinsic to A. baumannii. Antibiotic sensitivity was detected by modified disc diffusion method and biofilm formation was detected by Tissue culture plate method. Results: Among 85 isolates, 45.9% A. baumannii were obtained from tracheal aspirate followed by blood (21.2%), wound swab (15.3%), urine (10.6%), pus (5.9%) and pleural fluid (1.1%). More than 80% 0f A. baumannii was resistant to cephalosporin, aminoglycosides, quinolone, carbapenem. By Tissue culture plate method, 78.8% of isolates showed biofilm formation. Biofilm formation in tracheal aspirate was 82.1%, in blood 72%, in wound swab 92%, in urine 44.4%, in pus 100% and in pleural fluid 100%. Conclusion: Detection rate of A. baumannii was more in tracheal aspirates. Biofilm producing A. Baumannii was resistant to most of the antibiotics. Bangladesh J Med Microbiol 2018; 12 (2): 4-9


2022 ◽  
Vol 12 ◽  
Author(s):  
Brandon Robin ◽  
Marion Nicol ◽  
Hung Le ◽  
Ali Tahrioui ◽  
Annick Schaumann ◽  
...  

Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 833
Author(s):  
Camila Pimentel ◽  
Casin Le ◽  
Marisel R. Tuttobene ◽  
Tomas Subils ◽  
Krisztina M. Papp-Wallace ◽  
...  

Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


Sign in / Sign up

Export Citation Format

Share Document