clinical disease progression
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Christopher Clark ◽  
Jonas Richiardi ◽  
Bénédicte Maréchal ◽  
Gene L. Bowman ◽  
Loïc Dayon ◽  
...  

Abstract Background Neuroinflammation may contribute to psychiatric symptoms in older people, in particular in the context of Alzheimer’s disease (AD). We sought to identify systemic and central nervous system (CNS) inflammatory alterations associated with neuropsychiatric symptoms (NPS); and to investigate their relationships with AD pathology and clinical disease progression. Methods We quantified a panel of 38 neuroinflammation and vascular injury markers in paired serum and cerebrospinal fluid (CSF) in a cohort of cognitively normal and impaired older subjects. We performed neuropsychiatric and cognitive evaluations and measured CSF biomarkers of AD pathology. Multivariate analysis determined serum and CSF neuroinflammatory alterations associated with NPS, considering cognitive status, AD pathology, and cognitive decline at follow-up visits. Results NPS were associated with distinct inflammatory profiles in serum, involving eotaxin-3, interleukin (IL)-6 and C-reactive protein (CRP); and in CSF, including soluble intracellular cell adhesion molecule-1 (sICAM-1), IL-8, 10 kDa interferon-γ-induced protein, and CRP. AD pathology interacted with CSF sICAM-1 in association with NPS. Presenting NPS was associated with subsequent cognitive decline which was mediated by CSF sICAM-1. Conclusions Distinct systemic and CNS inflammatory processes are involved in the pathophysiology of NPS in older people. Neuroinflammation may explain the link between NPS and more rapid clinical disease progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. C. Sasson ◽  
L. E. Wilkins ◽  
R. A. Watson ◽  
C. Jolly ◽  
O. Brain ◽  
...  

AbstractDevelopment of anti-drug antibodies (ADAs) can interfere with therapeutic monoclonal antibodies and may lead to drug neutralisation and clinical disease progression. Measurement of circulating drug levels and development of ADAs in the setting of anti-programmed cell death-1 agent pembrolizumab has not been well-studied. Enzyme-linked immunosorbent assays were used to measure pembrolizumab drug level and ADAs in 41 patients with melanoma at baseline, Time-point 1 (3 weeks) and Time-point 2 (21 weeks). Assay results were related to patient demographics and clinical outcome data at 6 months. The median pembrolizumab drug level at 3 weeks was 237 ng/μL and did not correlate with age, sex or body surface area.17/41 patients had an ADA detected at any timepoint, with the highest prevalence at Timepoint 1 (median concentration = 17 ng/μL). The presence of an ADA did not correlate with clinical progression at 6 months. 3/41 (7%) of patients displayed a falling pembrolizumab drug level and rising ADA titre between Timepoint 1 and 2 suggestive of a neutralising ADA. Pembrolizumab drug levels and ADAs can be readily measured. The rates of total and treatment-emergent ADAs may be higher in “real-word” settings than those previously reported. Larger studies are needed to determine effect of neutralising ADAs on long-term clinical outcome.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kai-Yen Peng ◽  
Shih-Sheng Jiang ◽  
Yu-Wei Lee ◽  
Fang-Yu Tsai ◽  
Chia-Chi Chang ◽  
...  

Over 90% of colorectal cancer (CRC) patients have mutations in the Wnt/β-catenin pathway, making the development of biomarkers difficult based on this critical oncogenic pathway. Recent studies demonstrate that CRC tumor niche-stromal cells can activate β-catenin in cancer-initiating cells (CICs), leading to disease progression. We therefore sought to elucidate the molecular interactions between stromal and CRC cells for the development of prognostically relevant biomarkers. Assessment of CIC induction and β-catenin activation in CRC cells with two human fibroblast cell-conditioned medium (CM) was performed with subsequent mass spectrometry (MS) analysis to identify the potential paracrine factors. In vitro assessment with the identified factor and in vivo validation using two mouse models of disease dissemination and metastasis was performed. Prediction of additional molecular players with Ingenuity pathway analysis was performed, with subsequent in vitro and translational validation using human CRC tissue microarray and multiple transcriptome databases for analysis. We found that fibroblast-CM significantly enhanced multiple CIC properties including sphere formation, β-catenin activation, and drug resistance in CRC cells. MS identified galectin-1 (Gal-1) to be the secreted factor and Gal-1 alone was sufficient to induce multiple CIC properties in vitro and disease progression in both mouse models. IPA predicted SOX9 to be involved in the Gal-1/β-catenin interactions, which was validated in vitro, with Gal-1 and/or SOX9—particularly Gal-1high/SOX9high samples—significantly correlating with multiple aspects of clinical disease progression. Stromal-secreted Gal-1 promotes CIC-features and disease dissemination in CRC through SOX9 and β-catenin, with Gal-1 and SOX9 having a strong clinical prognostic value.


2021 ◽  
Vol 22 (17) ◽  
pp. 9513
Author(s):  
Nicholas A. Maksimowski ◽  
Xuewen Song ◽  
Eun Hui Bae ◽  
Heather Reich ◽  
Rohan John ◽  
...  

Our understanding of the mechanisms responsible for the progression of chronic kidney disease (CKD) is incomplete. Microarray analysis of kidneys at 4 and 7 weeks of age in Col4a3-/- mice, a model of progressive nephropathy characterized by proteinuria, interstitial fibrosis, and inflammation, revealed that Follistatin-like-1 (Fstl1) was one of only four genes significantly overexpressed at 4 weeks of age. mRNA levels for the Fstl1 receptors, Tlr4 and Dip2a, increased in both Col4a-/- mice and mice subjected to unilateral ureteral obstruction (UUO). RNAscope® (Advanced Cell Diagnostics, Newark CA, USA) localized Fstl1 to interstitial cells, and in silico analysis of single cell transcriptomic data from human kidneys showed Fstl1 confined to interstitial fibroblasts/myofibroblasts. In vitro, FSTL1 activated AP1 and NFκB, increased collagen I (COL1A1) and interleukin-6 (IL6) expression, and induced apoptosis in cultured kidney cells. FSTL1 expression in the NEPTUNE cohort of humans with focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), and IgA nephropathy (IgAN) was positively associated with age, eGFR, and proteinuria by multiple linear regression, as well as with interstitial fibrosis and tubular atrophy. Clinical disease progression, defined as dialysis or a 40 percent reduction in eGFR, was greater in patients with high baseline FSTL1 mRNA levels. FSTL1 is a fibroblast-derived cytokine linked to the progression of experimental and clinical CKD.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Eugen Mengel ◽  
Bruno Bembi ◽  
Mireia del Toro ◽  
Federica Deodato ◽  
Matthias Gautschi ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


AIDS ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Christina Ekenberg ◽  
Joanne Reekie ◽  
Adrian G. Zucco ◽  
Daniel D. Murray ◽  
Shweta Sharma ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1008859
Author(s):  
Kathryn A. Jewett ◽  
Ruth E. Thomas ◽  
Chi Q. Phan ◽  
Bernice Lin ◽  
Gillian Milstein ◽  
...  

Abnormal protein aggregation within neurons is a key pathologic feature of Parkinson’s disease (PD). The spread of brain protein aggregates is associated with clinical disease progression, but how this occurs remains unclear. Mutations in glucosidase, beta acid 1 (GBA), which encodes glucocerebrosidase (GCase), are the most penetrant common genetic risk factor for PD and dementia with Lewy bodies and associate with faster disease progression. To explore how GBA mutations influence pathogenesis, we previously created a Drosophila model of GBA deficiency (Gba1b) that manifests neurodegeneration and accelerated protein aggregation. Proteomic analysis of Gba1b mutants revealed dysregulation of proteins involved in extracellular vesicle (EV) biology, and we found altered protein composition of EVs from Gba1b mutants. Accordingly, we hypothesized that GBA may influence pathogenic protein aggregate spread via EVs. We found that accumulation of ubiquitinated proteins and Ref(2)P, Drosophila homologue of mammalian p62, were reduced in muscle and brain tissue of Gba1b flies by ectopic expression of wildtype GCase in muscle. Neuronal GCase expression also rescued protein aggregation both cell-autonomously in brain and non-cell-autonomously in muscle. Muscle-specific GBA expression reduced the elevated levels of EV-intrinsic proteins and Ref(2)P found in EVs from Gba1b flies. Perturbing EV biogenesis through neutral sphingomyelinase (nSMase), an enzyme important for EV release and ceramide metabolism, enhanced protein aggregation when knocked down in muscle, but did not modify Gba1b mutant protein aggregation when knocked down in neurons. Lipidomic analysis of nSMase knockdown on ceramide and glucosylceramide levels suggested that Gba1b mutant protein aggregation may depend on relative depletion of specific ceramide species often enriched in EVs. Finally, we identified ectopically expressed GCase within isolated EVs. Together, our findings suggest that GCase deficiency promotes accelerated protein aggregate spread between cells and tissues via dysregulated EVs, and EV-mediated trafficking of GCase may partially account for the reduction in aggregate spread.


Sign in / Sign up

Export Citation Format

Share Document