In approaches to protein purification, the concepts of yield and purity are routinely used, but are often difficult to define in absolute terms. To some extent the purity of a protein sample will be defined by the final designated use of the product. In most cases, analyses will involve measurement of the mass of the protein in the sample and quantitation of specific property of the target molecule (e.g. activity) to provide values for the yield. Thus, the calculation of specific activity of given fractions through the purification process provides a valuable indication of the level of the purity attained. Although, conventionally, specific activity is used in the purification of enzymes, due to the availability of sensitive and specific assays, recent developments in fast chromatographic separations and protein mass spectrometry have led to application of these techniques to address the purity of a wider variety of biomolecules. The level of purity for any protein product requires several factors to be taken into consideration. Besides the intended use, the source of the protein will dictate the extent of analyses required, since the level of impurities present in the final product will depend not only on the purification process used but also on the starting source material. For bulk enzyme preparations (for use e.g. in biotransformations or related applications) it may only be necessary to ensure the product is free of any contaminating activities which could effect the outcome of these types of applications. For proteins required for physical studies (protein crystallography, primary sequence analysis), the purity criteria are more stringent, particularly, since the lack of purity (including sample microheterogeneity) can drastically influence the outcome of such studies. Alternatively, proteins intended for therapeutic use will have purity considerations significantly different, constrained not only by regulatory requirements but also by clinical responses that may arise from the presence of any contaminants. The nature of these contaminants, as mentioned earlier, will depend on the starting source of the target molecule (i.e. animal tissue, human serum, recombinant micro-organisms [prokaryotes, eukaryotes], and hybridomas).