Effects of Herbicide Management Practices on the Weed Density and Richness in 2,4-D- Resistant Cropping Systems in Indiana

2021 ◽  
pp. 1-23
Author(s):  
Connor L. Hodgskiss ◽  
Travis R. Legleiter ◽  
Bryan G. Young ◽  
William G. Johnson

Commercialization of 2,4-D-resistant soybean varieties allows for postemergence (POST) applications of 2,4-D in soybean. With the increase in POST applications of 2,4-D in soybean, shifts in weed populations may occur. A long-term field trial was conducted over seven years in a corn-soybean rotation. Weed populations were subjected to four herbicide strategies with variable levels of 2,4-D reliance. The strategies used included: 1) diversified glyphosate strategy with six herbicide sites of action (SOA); 2) 2,4-D reliant strategy with three SOA; 3) diversified 2,4-D reliant strategy with seven SOA; and 4) fully diversified strategy with eight SOA. Soil residual herbicides were utilized for both corn and soybean years, except for the 2,4-D reliant strategy which only utilized a residual herbicide during the corn years. A 52% or greater reduction in weed densities for all herbicide strategies, except the 2,4-D reliant strategy, was observed by the end of the study. However, the density of weeds tolerant to 2,4-D, such as monocots, increased after three years of selection pressure, and more than doubled after five years of selection pressure in the 2,4-D reliant strategy. Additionally, in the 2,4-D reliant strategy with three SOA, species richness was 30% higher in the soil seedbank compared to herbicides strategies with six or more SOA. In order to delay weed shifts, diversified herbicide strategies with more than three SOA that include residual herbicides should be used in corn:soybean rotational systems that utilize 2,4-D-resistant soybean.

Weed Science ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 311-323
Author(s):  
Vipan Kumar ◽  
Augustine Obour ◽  
Prashant Jha ◽  
Rui Liu ◽  
Misha R. Manuchehri ◽  
...  

AbstractThe widespread evolution of herbicide resistance in weed populations has become an increasing concern for no-tillage (NT) growers in semiarid regions of the U.S. Great Plains. Lack of cost-effective and alternative new herbicide sites of action further exacerbates the problem of herbicide-resistant (HR) weeds and threatens the long-term sustainability of prevailing cropping systems in the region. A recent decline in commodity prices and increasing herbicide costs to manage HR weeds has spurred research efforts to build a strong rationale for developing ecologically based integrated weed management (IWM) strategies in the U.S. Great Plains. Integration of cover crops (CCs) in NT dryland production systems potentially offers several ecosystem services, including weed control, soil health improvement, decline in selective pest pressure, and overall reduction in pest management inputs. This review article aims to document the role of CCs for IWM, with emphasis on exploring emerging weed issues; ecological, economic, and agronomic benefits of growing CCs; and constraints preventing adoption of CCs in NT cropping systems in the semiarid Great Plains. We attempt to focus on changes in weed management practices, their long-term impacts on weed seedbanks, weed shifts, and herbicide-resistance evolution in the most common weed species in the region. We also highlight current knowledge gaps and propose new research priorities based on an improved understanding of CC management strategies that will ultimately aid in achieving sustainable weed management goals and preserving natural resources in water-limited environments.


Weed Science ◽  
2020 ◽  
pp. 1-7
Author(s):  
Connor L. Hodgskiss ◽  
Travis R. Legleiter ◽  
Bryan G. Young ◽  
William G. Johnson

Abstract The addition of dicamba as a weed control option in soybean [Glycine max (L.) Merr.] is a valuable tool. However, this technology must be utilized with other herbicide sites of action (SOAs) to reduce selection pressure on weed communities and ensure its prolonged usefulness. A long-term trial was conducted for 7 yr in Indiana to evaluate weed community densities and species richness with four levels of dicamba selection pressure in a corn (Zea mays L.)–soybean rotation. Monocot densities and richness increased over time in the dicamba-reliant treatment. Dicot densities in the dicamba-reliant treatment declined over time, but dicot richness increased. The soil weed seedbank was affected by the varying herbicide strategies. The dicamba-reliant strategy had greater than 43% higher total weed density than all other treatments, primarily due to having a monocot density that was at least 71% higher than the other treatments. The fully diversified strategy with eight SOAs and residual herbicides used every year had the lowest total weed species richness in the soil seedbank, which supported the in-field observations.


1999 ◽  
Vol 35 (2) ◽  
pp. 181-199 ◽  
Author(s):  
S. R. PASCUA JR ◽  
W. VENTURA ◽  
E. O. AGUSTIN ◽  
A. T. PADRE ◽  
D. A. VALENCIA ◽  
...  

A long-term field trial was conducted to determine yield trends in relation to nutrient uptake and efficiency in different rice-based cropping systems. The cropping systems had a significant effect on wet season rice yield when residues were not recycled but had no effect otherwise. Rice yield decreased after the first year of crop residue incorporation but increased every year thereafter. Rice yield was significantly affected by residual nutrients applied to dry season crops. The highest residual effect was observed in tomato and sweet pepper to which the highest nitrogen (N), phosphorus (P) and potassium (K) rates were applied. Maize, sweet pepper, and tomato responded well to NPK application, garlic had a low response and mungbean had no response. A relay crop served as a catch crop for excess nutrients and as shade to minimize sunscald effects for tomato and sweet pepper fruits.


2020 ◽  
Vol 52 (3) ◽  
pp. 385-397
Author(s):  
Ming Su Lavik ◽  
Gudbrand Lien ◽  
Audun Korsaeth ◽  
J. Brian Hardaker

AbstractTo support decision-makers considering adopting integrated pest management (IPM) cropping in Norway, we used stochastic efficiency analysis to compare the risk efficiency of IPM cropping and conventional cropping, using data from a long-term field experiment in southeastern Norway, along with data on recent prices, costs, and subsidies. Initial results were not definitive, so we applied stochastic efficiency with respect to a function, limiting the assumed risk aversion of farmers to a plausible range. We found that, for farmers who are risk-indifferent to moderately (hardly) risk averse, the conventional system was, compared to IPM, less (equally) preferred.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdullah A. Jaradat

Guidelines are needed to develop proper statistical analyses procedures and select appropriate models of covariance structures in response to expected temporal variation in long-term experiments. Cumulative yield, its temporal variance, and coefficient of variation were used in estimating and describing covariance structures in conventional and organic cropping systems of a long-term field experiment in a randomized complete block design. An 8-year database on 16 treatments (conventional and organic cropping systems, crop rotations, and tillage) was subjected to geostatistical, covariance structure, variance components, and repeated measures multivariate analyses using six covariance models under restricted maximum likelihood. Differential buildup of the cumulative effects due to crop rotations being repeated over time was demonstrated by decreasing structured and unstructured variances and increasing range estimates in the geostatistical analyses. The magnitude and direction of relationships between cumulative yield and its temporal variance, and coefficient of variation shaped the covariance structures of both cropping systems, crop rotations, and phases within crop rotations and resulted in significant deviations of organic management practices from their conventional counterparts. The unstructured covariance model was the best to fit most factor-variable combinations; it was the most flexible, but most costly in terms of computation time and number of estimated parameters.


Soil Research ◽  
2009 ◽  
Vol 47 (5) ◽  
pp. 459 ◽  
Author(s):  
Michael Tatzber ◽  
Michael Stemmer ◽  
Heide Spiegel ◽  
Christian Katzlberger ◽  
Franz Zehetner ◽  
...  

The stabilisation of 14C-labelled farmyard manure was investigated under different cropping systems (crop rotation, monoculture, and bare fallow) in a long-term field experiment established in 1967. Solid-state 13C-NMR of bulk soils yielded a gradient of increasing aromatic properties in the order: straw manure–crop rotation < straw manure–monoculture < straw and farmyard manure–bare fallow. The opposite trend was observed for O-alkyl groups. The farmyard manure–bare fallow treatment was used to investigate changes of humic acids (HAs) with time. The FT-IR bands of aromatics, carbonyl groups, and a band of methyls and benzene rings increased over the 36 years of the experiment, whereas 2 amide bands and a band of sulfone and/or ester groups decreased. Fluorescence spectroscopy verified the increase in aromatic properties with age. Consequently, during soil organic matter stabilisation, HAs showed increasing properties of carbonyl and aromatic groups, whereas amidic groups decreased. The dynamic character of HAs, as shown by 14C, was also reflected by distinct spectroscopic changes over the period of investigation.


2020 ◽  
Author(s):  
David Nimblad Svensson ◽  
Jumpei Fukumasu ◽  
Gunnar Börjesson ◽  
John Koestel

&lt;p&gt;Soil porosity, pore size distribution and pore characteristics such as connectivity are important for a range of soil processes including ease of root growth and air and water transport. The pore structure is therefore an important part of soil fertility. The pore space is sensitive to management practices such as tillage, fertilization and cropping. Understanding how these practices influence the pore space is important for maintaining a good soil structure that is well aerated and has sufficient drainage. X-ray computed tomography has become a widely used method for studying the pore space as it offers the advantage of enabling soil to be studied in its undisturbed form. In this study it was used to compare the effects of crop growth, tillage and N-fertilizing with Ca(NO3)&lt;sub&gt;2&lt;/sub&gt; or farm yard manure (FYM). Soil samples were taken just below the surface from the long-term experiment in Ultuna, Sweden which was started in 1956. The bare fallow, FYM and Ca(NO3)&lt;sub&gt;2&lt;/sub&gt;-treatment were sampled with minimum disturbance in two column sizes with inner diameters of 22.2 and 65.5 mm. Differences in pore space morphology were quantified and compared through pore size distribution and a range of connectivity measures, including the Euler number, the critical pore diameter and Gamma connectivity. Biopores were separated from non-biopores and their volume was quantified. Soil organic carbon was determined by dry combustion. Visible porosity and pores in the 150-500 &amp;#181;m class were significantly larger in the FYM and Ca(NO3)&lt;sub&gt;2&lt;/sub&gt;-treatment compared to the bare fallow. The porosity occupied by biopores was not found to significantly differ between treatments but the biopores were found to have the largest diameters in the FYM-treatment. Despite that the organic carbon content was 1.7 times higher in the FYM compared to the Ca(NO3)&lt;sub&gt;2&lt;/sub&gt;-treatment the visible porosity was similar. This may be due to the positive effects calcium has on the soil structure. The connectivity measures indicated that the FYM-treatment had the best connected pore networks. This may be partly due to the larger biopores. Ca(NO3)&lt;sub&gt;2&lt;/sub&gt; showed to be a promising alternative to increase porosity. However, as all the management practices in the long-term field study are done by hand, future studies will have to investigate if the effect is equally similar to FYM under field conditions which are subject to heavy machineries.&amp;#160;&amp;#160;&lt;/p&gt;


Geoderma ◽  
2021 ◽  
Vol 383 ◽  
pp. 114700
Author(s):  
Claudia Savarese ◽  
Marios Drosos ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Alessandro Piccolo

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 96 ◽  
Author(s):  
Hugh J. Beckie ◽  
Ken C. Flower ◽  
Michael B. Ashworth

Recent statements from scientific organisations and court decisions have resulted in widespread public interest and concern over the safety of glyphosate, the most popular and effective herbicide used worldwide. Consequently, glyphosate-based products are under intense scrutiny from governments at all levels. Some jurisdictions have already banned or restricted its use, which will adversely impact international trade in bulk grain commmodities if glyphosate residues are detected. The possibility of farming without glyphosate is becoming an important issue facing the agri-food research and development sector. Contingency plans need to be formulated if that scenario becomes a reality. In this review, we briefly summarize international events that have led to this possible situation, describe current glyphosate usage in major agronomic field crops worldwide, outline possible alternatives to glyphosate in two agroregions and perform bioeconomic model scenarios of southern Australian broadacre cropping systems without the herbicide. Model predictions suggest that we can farm profitably without glyphosate by consistently utilizing key non-herbicidal weed management practices combined with robust pre-emergence soil residual herbicide treatments. However, maintaining low weed seed banks will be challenging. If the social license to use glyphosate is revoked, what other pesticides will soon follow?


2011 ◽  
Vol 62 (10) ◽  
pp. 876 ◽  
Author(s):  
H. F. Zheng ◽  
L. D. Chen ◽  
X. Z. Han

Developing and assessing successful strategies to alleviate adverse impact of climate warming presents a new opportunity for sustainable agriculture and adaptation investment. Efforts to anticipate adaptation of cropping systems may benefit from understanding the global warming effects within decades. This study quantitatively examines the temperature warming impacts during, respectively, growing season and seed filling on soybean yields by using data from long-term field fertilisation experiments from 1987 to 2004. Here we report that grain yields significantly decreased with rising temperature during growing season, whereas the effects of increasing temperature at seed-filling stage on crop yields were significantly positive. The results indicate that a further temperature increment during seed filling appears to decrease soybean system’s risk of yield reduction. Importantly, we inferred that earlier occurrence of seed filling would increase the temperature of this period. The implication is that advancing the onset of soybean seed filling could be an effective adaptation option to global warming, providing an average yield benefit of ~14% per 10 days before the present date.


Sign in / Sign up

Export Citation Format

Share Document