scholarly journals Effects of the Sea Breeze Circulation on Soil Temperature Over Kuwait Using in Situ Observations and the ECMWF Model

2019 ◽  
Vol 13 (1) ◽  
pp. 29-42
Author(s):  
Hussain Alsarraf ◽  
Matthew V.D. Broeke ◽  
Hala Aljassar

Background: The mesoscale circulation over Kuwait is an important influence on changes in surface temperatures and soil temperatures. Introduction: This paper presents two common summertime atmospheric features over Kuwait linking wind circulation to soil temperatures. Methods: In this study, we use the European Centre for Medium-range Weather Forecasts ECMWF reanalysis ERA-Interim dataset to investigate effects of the synoptic scale and mesoscale circulations. Results: The results show that a large-scale pressure gradient in summer typically leads to northerly winds over Kuwait, while a weak synoptic-scale pressure gradient leads to light easterly humid winds from the Persian Gulf, consistent with a mesoscale circulation. Conclusions: The results demonstrate the significance of wind circulations in driving the Soil Temperature (SOILT). Using the Era-Interim/Land reanalysis dataset for August 2015 over Kuwait, the average SOILT on days of sea breeze is higher than the average SOILT on days dominated by a synoptic-scale pressure gradient.

2014 ◽  
Vol 7 (6) ◽  
pp. 8805-8873
Author(s):  
N. Žagar ◽  
A. Kasahara ◽  
K. Terasaki ◽  
J. Tribbia ◽  
H. Tanaka

Abstract. The paper presents new software for the analysis of global dynamical fields in (re)analyses, weather forecasts and climate models. A new diagnostic tool, developed within the MODES project, allows one to diagnose properties of balanced and inertio-gravity (IG) circulation across many scales. In particular, the IG spectrum, which has only recently become observable, can be studied simultaneously in the mass field and wind field and considering the whole model depth in contrary to majority of studies. The paper presentation includes the theory of normal-mode function expansion, technical details of the Fortran 90 code, examples of namelists which control the software execution and outputs of the software application on the reanalysis dataset ERA Interim. The applied libraries and default compiler are from the open-source domain. A limited understanding of Fortran suffices for the successful implementation of the software. The presented application of the software to the ERA Interim dataset show some features of the large-scale circulation after it has been split into the balanced and IG components. The global energy distribution is dominated by the balanced energy with IG modes making less than 10% of the total wave energy. However, on subsynoptic scales IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally-averaged and equatorial circulation provide a reference for the validation of climate models.


2012 ◽  
Vol 69 (1) ◽  
pp. 281-302 ◽  
Author(s):  
Boualem Khouider ◽  
Ying Han ◽  
Joseph A. Biello

Abstract Convective momentum transport (CMT) is the process of vertical transport of horizontal momentum by convection onto the environmental flow. The significance of CMT from mesoscale to synoptic- and planetary-scale organized cumulus convection has been established by various theoretical and observational studies. A new strategy mimicking the effect of unresolved mesoscale circulation based on the weak temperature gradient (WTG) approximation with a Gaussian profile to redistribute the heating due to parameterized cumulus convection at the subgrid scale is adopted here to construct a CMT parameterization for general circulation models (GCMs). Two main regimes of CMT are considered: an upscale squall-line regime and a downscale non-squall-line regime. An exponential probability distribution is used to select which of these two effects is active, conditional on the state of the large-scale shear. The shear itself is used as a measure of the persistence of mesoscale organized circulation due to the presence or not of tilted deep convective heating with lagged stratiform anvils. The CMT model is tested in the simple case of the multicloud model of Khouider and Majda, used here as a toy GCM. Numerical simulations are performed here for the simple case without rotation, in a parameter regime where the multicloud model exhibits packets of convectively coupled gravity waves moving in one direction, at 17 m s−1, and planetary-scale wave envelopes moving in the opposite direction, at 4–6 m s−1, reminiscent of the Madden–Julian oscillation (MJO) and the associated embedded synoptic-scale superclusters. The results herein show that the inclusion of CMT intensifies both the synoptic-scale convectively coupled waves and the manifestation of planetary-scale waves in the multicloud model. This provides evidence that the present CMT model captures the essence of the physical mechanism through which kinetic energy is transferred from the subgrid-scale mesoscale circulation to the large-scale/resolved motion. Sensitivity simulations showed that two key parameters for the CMT parameterization are the relative strength of the parameterized stratiform anvils and the dimensional threshold used in the exponential distribution for the cumulus friction and the upscale CMT forcing resulting from organized subgrid mesoscale circulation.


2021 ◽  
Author(s):  
Dominik Büeler ◽  
Jan Wandel ◽  
Julian F. Quinting ◽  
Christian M. Grams

<div><span>Sub-seasonal numerical weather forecasts (10 – 60 days) primarily aim to predict the evolution of the large-scale circulation and its associated surface weather on continent- and multi-daily scales. In the extratropics, this atmospheric variability is depicted best by so-called weather regimes. Here, we assess the ability of sub-seasonal reforecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) to predict 7 year-round weather regimes in the Atlantic-European region. We first investigate how well the forecasts reproduce frequency, length, and transitions of the weather regime life cycles. We then show that the average forecast skill horizon varies by several days for different weather regimes, seasons, and initial planetary-scale flow states. In a final part, we provide first insight into how synoptic-scale processes, more specifically warm conveyor belts, and their inherent intrinsic predictability limit might affect this flow-dependent sub-seasonal weather regime forecast skill.</span></div>


2006 ◽  
Vol 63 (11) ◽  
pp. 2720-2739 ◽  
Author(s):  
Saša Gaberšek ◽  
Dale R. Durran

Abstract Numerical simulations are conducted of geostrophically balanced flow over an isolated mountain cut by a horizontal gap. The relative importance of the along-gap synoptic-scale pressure gradient and terrain-induced mesoscale circulations for the generation of gap winds was examined by changing the direction of the synoptic-scale wind relative to the topography. In all cases, the forcing associated with mesoscale circulations generated by the mountain was at least as significant as the synoptic-scale pressure gradient. In the cases where a component of the large-scale flow was directed perpendicular to the ridge, the dynamics were dominated by either the vertical momentum fluxes due to mountain lee waves or by mesoscale pressure gradients associated with upstream blocking or lee troughing. Mesoscale circulations were also important when the large-scale flow was parallel to the ridge because surface friction turned the low-level winds toward the high pressure side of the ridge, partially blocking the flow and enhancing the along-gap pressure gradient. The flow in the interior of a very long uniform gap was also simulated for a case with the synoptic-scale winds parallel to the ridge so that the synoptic-scale pressure gradient was down the gap. The flow in the interior of the long gap was not horizontal and not in a simple dynamical balance between acceleration, the pressure gradient force, and surface friction. Even the flow in the lowest 150 m was gradually subsiding. Subsidence and lateral momentum flux convergence at low levels near the center of the gap were important contributors to the mass and along-gap momentum budgets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bethany I. Taggert ◽  
Charlie Walker ◽  
Deli Chen ◽  
Uta Wille

AbstractNitrogen (N) fertilisers amended with nitrification inhibitors can increase nitrogen use efficiencies in agricultural systems but the effectiveness of existing commercial inhibitor products, including 3,4-dimethylpyrazole phosphate (DMPP), is strongly influenced by climatic and edaphic factors. With increasing pressure to reduce the environmental impact of large-scale agriculture it is important to develop new nitrogen-stabilising products that can give reliable and consistent results, particularly for warmer climatic conditions. We synthesised a library of 17 compounds featuring a substituted 1,2,3-triazole motif and performed laboratory incubations in two south-eastern Australian soils. In the neutral (pH 7.3) soil, the compounds N002, N013, N016 and N017, which possess short non-polar alkyl or alkynyl substituents at the triazole ring, retained NH4+-N concentrations at 35 °C soil temperature to a better extent (P < 0.001) than DMPP. In the alkaline soil (pH 8.8) N013 performed better with regards to NH4+-N retention (P = 0.004) than DMPP at 35 °C soil temperature. Overall, our data suggest that substituted 1,2,3-triazoles, which can be synthesized with good yields and excellent atom economy through 1,3-dipolar cycloaddition from readily available starting materials, are promising nitrification inhibitors performing similar to, or better than DMPP, particularly at elevated soil temperatures.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Philipp Grabenweger ◽  
Branislava Lalic ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Erwin Murer ◽  
...  

A one-dimensional simulation model that simulates daily mean soil temperature on a daily time-step basis, named AGRISOTES (AGRIcultural SOil TEmperature Simulation), is described. It considers ground coverage by biomass or a snow layer and accounts for the freeze/thaw effect of soil water. The model is designed for use on agricultural land with limited (and mostly easily available) input data, for estimating soil temperature spatial patterns, for single sites (as a stand-alone version), or in context with agrometeorological and agronomic models. The calibration and validation of the model are carried out on measured soil temperatures in experimental fields and other measurement sites with various climates, agricultural land uses and soil conditions in Europe. The model validation shows good results, but they are determined strongly by the quality and representativeness of the measured or estimated input parameters to which the model is most sensitive, particularly soil cover dynamics (biomass and snow cover), soil pore volume, soil texture and water content over the soil column.


2004 ◽  
Vol 8 (4) ◽  
pp. 706-716 ◽  
Author(s):  
K. Rankinen ◽  
T. Karvonen ◽  
D. Butterfield

Abstract. Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model


2013 ◽  
Vol 28 (4) ◽  
pp. 1038-1056 ◽  
Author(s):  
Yamei Xu ◽  
Tim Li ◽  
Melinda Peng

Abstract The Year of Tropical Convection (YOTC) high-resolution global reanalysis dataset was analyzed to reveal precursor synoptic-scale disturbances related to tropical cyclone (TC) genesis in the western North Pacific (WNP) during the 2008–09 typhoon seasons. A time filtering is applied to the data to isolate synoptic (3–10 day), quasi-biweekly (10–20 day), and intraseasonal (20–90 day) time-scale components. The results show that four types of precursor synoptic disturbances associated with TC genesis can be identified in the YOTC data. They are 1) Rossby wave trains associated with preexisting TC energy dispersion (TCED) (24%), 2) synoptic wave trains (SWTs) unrelated to TCED (32%), 3) easterly waves (EWs) (16%), and 4) a combination of either TCED-EW or SWT-EW (24%). The percentage of identifiable genesis events is higher than has been found in previous analyses. Most of the genesis events occurred when atmospheric quasi-biweekly and intraseasonal oscillations are in an active phase, suggesting a large-scale control of low-frequency oscillations on TC formation in the WNP. For genesis events associated with SWT and EW, maximum vorticity was confined in the lower troposphere. During the formation of Jangmi (2008), maximum Rossby wave energy dispersion appeared in the middle troposphere. This differs from other TCED cases in which energy dispersion is strongest at low level. As a result, the midlevel vortex from Rossby wave energy dispersion grew faster during the initial development stage of Jangmi.


Sign in / Sign up

Export Citation Format

Share Document